Кафедра общей и биоорганической химии



Дата21.06.2016
өлшемі161.34 Kb.
#152652


Министерство здравоохранения Российской Федерации
Государственное бюджетное образовательное учреждение

высшего профессионального образования

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИКО-СТОМАТОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

имени А.М. ЕВДОКИМОВА


КАФЕДРА ОБЩЕЙ И БИООРГАНИЧЕСКОЙ ХИМИИ


УГЛЕВОДЫ
ОЛИГО - , ПОЛИСАХАРИДЫ

лекция № 24

Продолжительность лекции-45 мин.

Составитель д.х.н., доцент Шелгаев В.Н.

2013

Олигосахариды.

Олигосахариды составляют промежуточную группу между моно- и полисахаридами. Как правило, к ним относят углеводы, содержащие в своей молекуле от двух до десяти остатков моносахаридов.

Простейшими олигосахаридами являются дисахариды. По своим физико-химическим свойствам они во многом сходны с моносахари-дами: обладают способностью кристаллизоваться, растворимы в воде и обладают сладким вкусом. Отличие заключается в способности дисахаридов к кислотному гидролизу.

Образование дисахаридов происходит путем димеризации моносахаридов с обязательным участием хотя бы одной гликозидной OH-группы. Существует два типа связывания моносахаридных остатков: «голова к хвосту» и «голова к голове». Под термином «голова» подразумевают гликозидную OH-группу, под термином «хвост»  любую другую гидроксильную группу. В первом случае образуются дисахариды, называемые восстанавливающими, во втором  невосстанавливающими.

Схему протекания димеризации по принципу «голова к хвосту» можно представить следующим образом:

Образующуюся связь называют гликозидной и обозначают


- (или -) (1 4), где цифры показывают положения гидроксилов, образующих связь, а - (или -)  конфигурацию этой связи.

Принцип «голова к голове» реализуется так:





Восстанавливающие дисахариды.

Среди восстанавливающих дисахаридов широко распространены мальтоза, лактоза, и целлобиоза. Эти дисахариды изомерны друг к другу и отвечают общей формуле C12H22O11.

Мальтоза (солодовый сахар) состоит из двух остатков D-глюкопи-ранозы, связанных (1 4)-гликозидной связью:

Аномерный атом углерода, участвующий в образовании глико-зидной связи, имеет α-конфигурацию. Второй аномерный атом может иметь как α- (α-мальтоза), так и -конфигурацию (-мальтоза). Преоб-ладающей является -форма.

Первая молекула глюкозы, поставляющая для образования связи гликозидную OH-группу, рассматривается как заместитель в 4-м по-ложении второго моносахарида. В этой связи в названии дисахарида она приобретает суффикс -озил, в названии же второй молекулы сохраняется суффикс -оза. В названии дисахарида обязательно указывается конфигурация обоих аномерных атомов. Таким образом, полное номенклатурное название α-мальтозы: α-D-глюкопиранозил-
(1 4)-α-D-глюкопираноза.

Мальтоза  промежуточный продукт расщепления крахмала и гликогена в желудочно-кишечном тракте. В свободном виде в пищевых продуктах она встречается в меде, солоде, пиве, патоке и проросшем зерне. Получают мальтозу гидролизом крахмала.

Лактоза состоит из остатка -D-галактопиранозы (невосстанавли-вающее звено), связанного -(1 4)-гликозидной связью с остатком
D-глюкозы:

Аномерный атом глюкозного фрагмента может иметь как α- (α-лактоза), так и -конфигурацию (-лактоза). Полное название лактозы: -D-галактопиранозил-(1 4)-α-(или )-D-глюкопираноза.

В природе лактоза содержится только в молоке. Она плохо растворима в холодной воде и в желудочно-кишечном тракте расщепляется до глюкозы и галактозы под действием фермента лактазы. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. В кисло-молочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

Целлобиоза образована двумя D-глюкопиранозными остатками, но в отличие от мальтозы, (1 4)-гликозидная связь имеет β-конфигу-рацию:



Целлобиоза является структурным компонентом целлюлозы. Интересно, что фермент α-глюкозидаза (мальтаза), расщепляющий мальтозу, неактивен по отношению к целлобиозе. Это объясняется различием в конфигурации гликозидной связи. Целлобиоза расщеп-ляется при помощи -глюкозидазы, которая в организме человека отсутствует. Поэтому целлобиоза и ее полимер целлюлоза в организ-ме человека не перерабатываются и не могут служить источником питания. В то же время жвачные животные употребляют в пищу растения, содержащие целлюлозу, так как в их пищеварительном тракте имеются бактерии, содержащие -глюкозидазу.

Восстанавливающие свойства мальтозы, лактозы и целлобиозы обусловлены наличием свободной полуацетальной гидроксильной группы, вследствие чего сохраняется способность к раскрытию цикла и образованию аномеров:

Таким образом, растворы восстанавливающих дисахаридов мутаротируют, но поскольку синтез природных дисахаридов с участием ферментов строго стереоспецифичен, гликозидная связь может находиться только в одной из возможных конфигураций


(α- или β-) и на ее стереохимию мутаротация не влияет. Кроме того, восстанавливающие дисахариды вступают в реакции с реактивами Бенедикта, Феллинга и Толленса.

Невосстанавливающие дисахариды.

Примером наиболее распространенных в природе невосстанавли-вающих дисахаридов является сахароза (свекловичный или тростни-ковый сахар). Молекула сахарозы состоит из остатков α-D-глюко-пиранозы и β-D-фруктофуранозы, соединенных друг с другом за счет взаимодействия обоих полуацетальных гидроксилов, т. е. (1 2)-гли-козидной связью:



В название невосстанавливающих дисахаридов один из моносахаридных остатков входит в общее название с суффиксом


-озил, а другой с суффиксом -озид. Если дисахарид состоит из остатков двух одинаковых моносахаридов, то не имеет значения, какой из них будет назван первым. Если же в состав дисахарида входят остатки различных моносахаридов, то название строится в соответствии с номенклатурным принципом: фрагменты моно-сахаридов располагают в алфавитном порядке. Таким образом, наз-вание сахарозы: α-D-глюкопиранозил-(1 2)-β-D-фруктофуранозид.

Отсутствие полуацетального гидроксила в молекуле сахарозы приводит к тому, что сахароза не имеет таутомерной оксо-формы и поэтому не обладает восстанавливающими свойствами, а ее растворы не мутаротируют.



Химические свойства дисахаридов.

Для восстанавливающих дисахаридов характерны многие реакции, в которые вступают моносахариды: образование гликозидов, простых и сложных эфиров, окисление и др. Некоторые процессы приведены на схеме 2:



Схема 2. Химические превращения мальтозы.

Однако в отличие от моносахаридов дисахариды способны к кислотному гидролизу, в результате которого разрывается гликозидная связь и образуются моносахариды. Так, при гидролизе сахарозы образуется смесь глюкозы и фруктозы:

Полученная смесь моносахаридов имеет левое вращение (39,5°), в то время как исходное вещество  сахароза  характеризуется противоположным углом вращения (+66,5°). Такое изменение знака связано с тем, что при гидролизе образуется фруктоза, имеющая угол вращения, равный –92°, и глюкоза, вращающаяся вправо на +52,5°. Разница между этими величинами и будет углом вращения смеси глюкозы и фруктозы. Изменение угла вращения под влиянием гидролиза называется инверсией (от лат. inversia  переворачивание), а смесь глюкозы и фруктозы, полученную при этом, называют инвертным сахаром или искусственным медом. Натуральный мед  природный инвертный сахар, который образуется в организме пчелы из сахарозы под влиянием фермента инвертазы.

К щелочному гидролизу дисахариды устойчивы.

Полисахариды.

Большинство углеводов встречается в природе в виде полисахаридов. Полисахариды (полиозы)  это высокомолекулярные соединения, состоящие из большого числа моносахаридных остатков, соединенных гликозидными связями. Общая формула полисахаридов (С6Н10О5)n.

Макромолекулы полисахаридов отличаются друг от друга природой повторяющихся моносахаридных звеньев, длиной цепи и степенью разветвления. Относительная молекулярная масса полисахаридов варьирует в широких пределах: от нескольких тысяч до нескольких миллионов, так как любой образец полисахарида него-могенен по составу, а состоит из полимергомологов разной длины и молекулярной массы. Многие полисахариды образуют высокоупоря-доченные надмолекулярные структуры, препятствующие гидратации отдельных молекул, поэтому такие полисахариды (хитин, целлюлоза) не только не растворяются, но и не набухают в воде.

Гомополисахариды.

К гомополисахаридам относятся полисахариды растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстрины) происхождения, состоящие из остатков моносахарида одного типа. Для большинства из них этим моносахаридом является D-глюкоза.

С учетом биологической роли гомополисахариды делятся на структурные и резервные. К резервным относятся крахмал и гликоген; к структурным  целлюлоза и хитин.

Резервные полисахариды.

Крахмал  это смесь двух полисахаридов (амилозы и амило-пектина), в состав которых входят остатки α-D-глюкопиранозы. Образуется в растениях в процессе фотосинтеза и содержится в клубнях, корнях, семечках. Цепь амилозы линейна и включает
200-1000 глюкозных остатков. Относительная молекулярная масса составляет  160000.

В водном растворе макромолекулярная цепь амилозы свернута в спираль, поэтому в воде амилоза не дает истинного раствора, а образует гидратированные мицеллы, которые при добавлении иода окрашиваются в синий цвет.



Амилопектин имеет разветвленное (звездообразное) строение. В отличие от амилозы амилопектин при набухании в водных растворах образует клейстер В основной цепи амилопектина остатки α-D-глюкопиранозы связаны α-(1 4)-гликозидными связями, а в местах разветвления  α-(1 6)-гликозидными связями:

Относительная молекулярная масса амилопектина в сотни больше чем у амилозы и составляет 1-6 млн. В воде амилопектин также образует коллоидные растворы, однако при добавлении иода раствор окрашивается не в синий, а в красно-фиолетовый цвет.

Гидролиз крахмала при нагревании в присутствии минеральных кислот приводит к образованию различных продуктов:

где m  n.



Растворимый крахмал  это частично гидролизованный полиса-харид. Его молекулярная масса несколько меньше, чем обычного крахмала. Растворимый крахмал растворяется в горячей воде, с йодом дает синее окрашивание.

Декстрины  это полисахариды с промежуточной длиной цепи. Они являются продуктами неполного гидролиза крахмала. Они хорошо растворяются в холодной воде и с йодом окрашиваются от фиолетового до желтого цвета. Промышленный способ получения декстринов – нагревание крахмала до 180-2000С. Например, процесс хлебопечения состоит в превращении нерастворимого крахмала в растворимые и гораздо легче усваиваемые организмом декстрины.

Блестящая поверхность накрахмаленного белья после глажения горячим утюгом также объясняется образованием декстринов.

Крахмал  ценный пищевой продукт. Применяется он и в химической промышленности. Например, кислотный гидролиз крахмала (при кипячении) служит промышленным методом получения глюкозы. Крахмал является сырьем для производства этилового и н-бутилового спиртов, ацетона, молочной и лимонной кислот, глицерина и других продуктов. Он используется для приклеивания бумаги и картона, производства декстринов и клеев.

В пищеварительном тракте гидролиз основных компонентов крахмала протекает под действием ферментов. Гидролиз амилозы протекает под действием фермента α-амилазы, который присутствует в слюне и соке поджелудочной железы. Этот фермент гидролизует


α-(1 4)-гликозидные связи с образованием в конечном итоге смеси глюкозы и мальтозы. α-(1 6)-гликозидные связи, находящиеся в точках ветвления, гидролизуются при помощи фермента α-(1 6)-глюкозидазы. Конечными продуктами гидролиза также являются глюкоза и мальтоза.

В животных организмах функциональным аналогом растительного крахмала является гликоген. Особенно много его содержится в печении в мышцах. Относительная молекулярная масса углевода составляет  100 млн. По структуре гликоген близок к амилопектину и отличается от него большей степенью разветвлен-ности. В пищеварительном тракте гликоген легко гидролизуется амилазами, что позволяет проводить быструю регенерацию глюкозы в организме человека в случае стрессовых ситуаций, при физических и умственных нагрузках. В клетках гидролиз гликогена осуществляется фосфоролитическим путем при помощи фермента фосфорилазы, которая последовательно отщепляет молекулы глюкозы в виде


1-фосфата.

В целом, функцию резервных полисахаридов можно представить следующим образом: если в клетке имеется избыток глюкозы, то под действием соответствующих ферментов ее молекулы присоединяются к молекулам крахмала или гликогена; если же возникает метаболическая потребность в глюкозе, то происходит ее фермента-тивное отщепление от полисахаридов.

В микроорганизмах (дрожжах, бактериях) роль резервных полисахаридов выполняют декстраны. Они также представляют собой полисахариды с разветвленной цепью и состоят из остатков
D-глюкозы, но отличаются от крахмала и гликогена тем, что структурные единицы их остова связаны главным образом α-(1 6)-гликозидными связями. Декстраны, синтезируемые бактериями, обитающими на поверхности зубов, являются компонентами зубного налета.

Структурные полисахариды.

Целлюлоза, или клетчатка (от лат. cellula – клетка),  главная составная часть оболочек растительных клеток, выполняющая функции конструкционного материала. Древесина состоит из целлюлозы примерно на 50%, а волокна хлопчатника (очищенная вата) представляет собой почти чистую целлюлозу (до 96%).

Целлюлоза представляет собой полисахарид, который состоит из остатков β-D-глюкопиранозы, связанных между собой -(1 4)-гли-козидными связями:



Относительная молекулярная масса целлюлозы составляет от 400 тысяч до 1-2 млн. Макромолекулы целлюлозы имеют линейное строение и образуют плотную кристаллическую структуру. Этим объясняется высокая устойчивость целлюлозы к механическим и химическим воздействиям, а также крайне низкая растворимость в воде, спирте, эфире, ацетоне и других растворителях.

В организме человека и большинства млекопитающих целлюлоза не расщепляется ферментами желудочно-кишечного тракта, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Так, клетчатка способствует выведению из организма избытка холестерина. Объясняется это тем, что клетчатка растительной пищи адсорбирует стерины и препятствует их всасы-ванию. Кроме того, клетчатка играет важную роль в нормализации полезной кишечной микрофлоры.

При длительном нагревании целлюлозы с минеральными кислотами, можно получить промежуточные продукты гидролиза, вплоть до D-глюкозы:



где m  n.

Полисахарид хитин служит главным структурным элементом твердого наружного скелета насекомых и ракообразных. Он представляет собой гомополимер N-ацетил-D-глюкозамина, остатки которого связаны межу собой -(1 4)-гликозидными связями, и по структуре близок к целлюлозе:

Как и целлюлоза, хитин нерастворим в воде и его цепи имеют кристаллическую упаковку.

К числу структурных гомополисахаридов относятся также инулин, построенный из остатков D-фруктозы (редкий случай, когда полисахарид построен из остатков кетоз) и пектиновые вещества, состоящие из остатков уроновых кислот (например, галактуроновой). Пектиновые вещества содержатся в растительных соках, плодах (яблоки, груши, лимон) и овощах (свекла, морковь). Современными исследованиями установлена возможность их использования с терапевтической целью при заболеваниях желудочно-кишечного тракта. Так, препарат «плантаглюцид», получаемый из подорожника, используется при язвенной болезни.

Гетерополисахариды.

Гетерополисахариды представляют собой полимеры, построен-ные из моносахаридов различных типов и их производных. Чаще всего гетерополисахариды состоят из двух различных мономеров, расположенных повторяющимся образом. Важнейшими представите-лями гетерополисахаридов в органах и тканях животных и человека являются гликозаминогликаны (мукополисахариды). Они состоят из неразветвленных цепей, содержащих аминосахара и уроновые кислоты, и выполняют важные биологические функции. В частности, они являются основой углеводных компонентов соединительных тканей (хрящей, сухожилий и др.), входят в состав костей и обеспечивают прочность и упругость органов.

Важную биологическую роль играет гиалуровая кислота: с ней связаны процессы оплодотворения, защита от проникновения микро-организмов, она находится в стекловидном теле глаза, в полости суставов и т. д. Повторяющейся единицей гиалуроновой кислоты служит дисахарид, состоящий из остатков D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных -(1 3)-гликозидной связью. В свою очередь, дисахаридные остатки соединены -(1 4)-глико-зидной связью:

Гиалуроновая кислота имеет высокую молекулярную массу –


2-7106, ее растворы обладают высокой вязкостью.

Другой мукополисахарид, обнаруженный в составе клеточных оболочек и основного внеклеточного вещества,  это хондроитин. По своей структуре хондроитин почти идентичен гиалуроновой кислоте: единственное различие состоит в том, что вместо остатков N-ацетил-D-глюкозамина он содержит остатки N-ацетил-D-галактозамина.

Такой дисахарид называется N-ацетилхондрозин:

Сернокислые эфиры хондроитина называются хондроитинсуль-фатами. Различают хондроитин-4- и хондроитин-6-сульфаты, в которых сульфатная группа образует сложноэфирную связь с гидроксильной группой N-ацетил-D-галактозамина соответственно при С-4 и при С-6. Они являются основными структурными компонентами хрящевой и костной ткани, роговицы и других видов соединительной ткани позвоночных. Молекулярная масса хондро-итинсульфатов колеблется в диапазоне от 10 до 60 тысяч.



В животных организмах также широко распространен гепарин, который был выделен из печени, тканей сердца и легких, а также из мышц. Он является природным антикоагулянтом крови и поэтому играет важную биологическую роль.

Гепарин имеет более сложное строение: чередующимися звеньями являются дисахариды, в состав которых входят остатки
D-глюкозамина, связанные -(1 4)-гликозидной связью с остатками либо D-глюкуроновой, либо L-идуроновой кислоты. В свою очередь, дисахариды связаны между собой -(1 4)-связью, если дисахарид оканчивается D-глюкуроновой кислотой и -(1 4)-связью  если
D-идуроновой кислотой.

Большинство аминогрупп гепарина сульфатированы, некоторые – ацетилированы. Кроме того, у ряда остатков L-идуроновых кислот су-льфатные группы содержатся при С-2, а у глюкозаминных – при С-6.



Структурным элементом стенок кровеносных сосудов является гепаритинсульфат, который содержит аналогичные дисахаридные единицы, но имеет в своем составе больше N-ацетильных групп и меньше сульфатных групп.



Химические свойства полисахаридов.

Химические свойства полисахаридов в основном связаны с наличием ОН-групп и гликозидных связей. Доля свободных альдегидных групп в макромолекуле сравнительно невелика, поэтому полисахариды восстанавливающих свойств практически не проявляют.

Из химических свойств полисахаридов наибольшее значение имеют реакции гидролиза и образование производных за счёт реакций макромолекул по гидроксильным группам.

Полисахариды устойчивы к гидролизу в щелочной среде, но при действии концентрированных растворов щелочей могут образовывать алкоголяты. Так, например, получают щелочную целлюлозу:



В кислой среде при неполном гидролизе образуются олигосахариды, в том числе и дисахариды. Полный гидролиз полисахаридов ведет к образованию моносахаридов. Способность полисахаридов к гидролизу увеличивается в ряду: целлюлоза < крахмал < гликоген.

И
H+
з целлюлозы (отходов деревообрабатывающей промышленнос-ти) в результате кислотного гидролиза и последующего сбраживания образующейся глюкозы получают этанол (называемый «гидролизным спиртом»):

(C6H10O5)n + nH2O nC6H12O6

C6H12O6 2C2H5OH + 2CO2

Среди производных полисахаридов наибольшее практическое значение имеют простые и сложные эфиры. Такая химическая модификация полимеров не сопровождается существенным измене-нием степени полимеризации макромолекул.

Сложные эфиры целлюлозы образуются при действии на целлюлозу минеральных или органических кислот и их ангидридов. Так, при взаимодействий целлюлозы со смесью азотной и серной кислот можно получить нитраты целлюлозы:

В зависимости от числа гидроксильных групп в глюкозном звене, вступивших в реакцию этерификации, образуются различные эфиры: моно-, ди- и тринитрат целлюлозы. Смесь моно- и динитрата целлюлозы называют колоксилином, а тринитрат целлюлозы – пироксилином. На основе нитратов целлюлозы (нитроцеллюлозы) получают различные взрывчатые вещества, например, порох. Нитраты целлюлозы также служат основой для получения нитролаков и эмалей.

При взаимодействии целлюлозы с уксусной кислотой (в присутствии серной кислоты) или уксусным ангидридом образуется ацетат целлюлозы. Наибольшее промышленное значение получил полный эфир  триацетат целлюлозы  называемый искусственным шелком:

Ацетаты целлюлозы применяют также для получения пластмасс, фото- и кинопленки, специальных лаков.

Из простых эфиров целлюлозы особое значение получили метил-, этил- и бутилцеллюлоза. Они образуются при действии галоген-алканов на щелочную целлюлозу. Например:

Алкилированная целлюлоза приобретает некоторую раствори-мость в воде, в связи с чем ее используют в качестве лаков, клеев и пропиточных материалов.



Для приготовления покрытий и загустителей применяют ацили-рованный крахмал. Алкильные производные крахмала используют в качестве пластификаторов и клеев.



Достарыңызбен бөлісу:




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет