Кіріспе
Жоспар
1. Ықтималдықтар теориясының тарихына шолу
2. Ықтималдықтар теориясының өмірде қолданылуы
3. Биологиядағы ықтималдықтар теориясы
Қорытынды
Пайдаланған әдебиеттер
Кіріспе
Адам ойы мен қиялы өте шексіз. Жылдарға, ғасырларға кейіндеп те, ілгерілеп те алға оза алады. Саналы адам көрсем, білсем, үйренсем деп тұрады. Көрген, білгенінен ой түйіндейді, қорытынды шығарады. Математика, физикада қарастырылатын есептер көбінесе бір мәнді анықталады. Мысалы: қолымызбен тасты лақтырсақ, онда тастың орнын кез-келген уақыт кезеңінде анықтай аламыз. Бірақ ғылымның әр саласында, техникада, шаруашылық саласында қолданылатын көптеген есептер бір мәнді анықталмайды. Мысалы: тиынды лақтырып, оның қай жағымен түсетінін нақты айтуға болмайды. Мұндай жағдайда осы сияқты есептерді шешуде белгілі бір нақты шешім айтуға болмайтын тәрізді көрінеді. Алайда бұл тәжірибеде керісінше. Ойын практикасы көрсеткендей тиынды неғұрлым көбірек лақтырсақ, солғұрлым әрекеттің жартысында елтаңба жағы түссе, енді жартысында цифр жағы түсетіні байқалды. Бұл кез- соқ оқиға. Белгілі бір заңдылыққа байланысты. Міне осындай заңдылықтарды ықтималдық теориясы қарастырады. Ең қарапайым мысал ретінде тиын лақтыруды алдық. Бірақ ықтималдықтар теориясында бұдан да күрделірек есептер қарастырылады.Шаруашылықтағы маңызды мәселенің бірі аудан мен облысты байланыстыратын телефон жүйесін орнату. Бұл да таза ықтималдық есеп. Мысалы: мұнда орталықтан ауданға телефон жүйесін тарту үшін қанша сым қажеттігі белгілі болу керек.Өмірде мұндай мәселелер көптеп кездеседі. Осындай мәселелер өндіріс саласын жоспарлауда,зерттеулер жүргізуде қолданылады. Мысалы:сынып арасында өткізілетін жарыстардың нәтижесі дәлірек болу үшін нәтижелер ондық үлеспен, жүздік үлеспен есептелінеді. Сонда әр сыныптың нәтижесі дәлірек болу үшін қанша таңбаға дейін алу керек деген сұрақ туындайды. Неғұрлым сынақ көп жасалынса, солғұрым нәтиже дәл болатыны белгілі.Ал ол үлкен шығынға әкеледі. Міне, осы арада ықтималдықтар теориясы көмекке келеді.
Адамның күнделікті өмірі, дүниені танып-білу барысы кездейсоқ оқиғаға толы. Бұл кездейсоқтықтар өмірдің даму заңдылығына кедергі келтірмейді, керісінше, кездейсоқтық пен заңдылық біріне-бірі әсер етіп,өмірдің дамуына себепші болады. Кездейсоқтық? Оны оқып үйрену не үшін қажет?-деп сұрайтын боларсыздар? Шын мәнінде,адамдар,ерте кездің өзінде-ақ оқиға өмірдегі бір ерекшелік емес,қағида екендігін байқаған. Міне сондықтан да кездейсоқ құбылыстар туралы ғылым пайда болды. Кездейсоқтық заңдарын білу қажет.Осыған байланысты мынадай мысал қарастырайық. Барлық ірі елді мекендерде «медициналық жедел жәрдем» станциялары бар. Кенеттен және қатты ауырып қалған адамдарға жедел жәрдем көрсету қажет болатын уақытты алдын ала болжап айту мүмкін емес. Берілген уақыт аралығында мұндай ауруларға шақырулардың көптігі қандай болады? Дәрігер мен «жедел жәрдем» машинасына аурудың қасында қанша уақыт кідіруіне тура келеді? Бір жағынан,аурулар жәрдемді өте ұзақ күтпеуі, екінші жағынан дәрігерлер құрамын өте тиімсіз пайдалану байқалмас үшін,кезекшілік кезінде қанша дәрігер және машина болуы қажет? Біз шақырту уақыттары,дәрігердің аурудың қасында болу ұзақтығы, машинаның «Жедел жәрдем»пунктінен, ауру тұратын үйге дейін жолда болу ұзақтығы.... кездейсоқ болып табылатын әдеттегі жағдаймен кездесіп отырмыз. Демек,амал біреу ғана:бұл жәрдем шынында да шұғыл болу үшін, барлық кездейсоқтықты ескере білу керек. Міне, тіпті осындай күнделікті мәселе де кездейсоқтықты білуді талап етеді. Сондықтан да оны оқып үйрену қажет. Осындай практикалық жұмыстарда есептеу әдістерін қолдана білуге үйрену, жалпы математикалық білім деңгейімді жетілдіру,пән бойынша жүйелі білімімді қалыптастыру,өмірде кездесетін оқиғаларды сараптай білу. Математика нақты ғылым, бір қарағанда кездейсоқтыққа ешқандай қатысы жоқ. Бірақ, осы кездейсоқтықтың сандық сипаттамасын, ықтималдық ұғымын берген басқа емес, осы математика. Ықтималдықтар теориясы өмірдегі кездейсоқтықтарды зерттеп, олардың заңдылықтарын ашады. Ықтималдықтар теориясы мен математикалық статистиканың элементтерін байланыстыратын бұл ғылым физика, биология, химия, экология гиология, география, экономика, лингвистика , психология т.с.с. білімнің барлық салаларында қолданыс табуда.
Достарыңызбен бөлісу: |