Мышечная деятельность в условиях пониженного и повышенного атмосферного давления, а также относительной невесомости Нам приходилось слышать рассказы о тяжелейших попытках покорения Эвереста, жесточайшем холоде, снежных обвалах и неудачах. Большинство же из нас, удобно расположившись в креслах, с удовольствием принимали участие в подводной одиссее с Жаком Кусто, любуясь непередаваемым великолепием подводного царства вместе с членами команды его корабля "Калипсо". С таким же удовольствием мы следили за передвижениями наших астронавтов в открытом космосе.
Физические условия каждой из этих сред настолько отличаются от тех, к которым мы привыкли, что при попадании туда человека функции его организма изменяются. Нашему телу приходится иметь дело с низким атмосферным давлением в условиях высокогорья, высоким атмосферным давлением под водой и невесомостью в космическом пространстве.
В этой главе мы изучим условия каждой из этих сред, их воздействия на организм человека и мышечную деятельность. Рассмотрим также факторы риска, связанные с пребыванием в таких условиях, и способы адаптации к ним.
Спортивные соревнования, проводимые в условиях высокогорья, традиционно характеризуются невысокими спортивными результатами. Именно этим объяснялось недовольство специалистов, когда было объявлено, что Игры XIX Олимпиады 1968 г. состоятся в Мехико, расположенном на высоте 2 290 м (7 500 футов) над уровнем моря. Вместе с тем по меньшей мере два спортсмена, принимавших участие в этих играх, были рады выступлению в условиях разреженного воздуха. Боб Бимон более чем на 2 фута превысил мировой рекорд в прыжках в длину, а Ли Эванс почти на целую секунду улучшил рекорд мира в беге на 400 м. Эти рекорды оставались непревзойденными почти 20 лет, свидетельствуя о том, что условия высокогорья Мехико способствовали демонстрации выдающихся результатов в этих относительно кратковременных, "взрывных" видах спорта.
При предыдущем рассмотрении физиологических реакций на физические нагрузки мы подразумевали условия, характерные для местности, расположенной на уровне моря, где барометрическое давление в среднем составляет 760 мм рт.ст., парциальное давление кислорода Рц — приблизительно 159 мм. рт. столба и где мы подвержены влиянию обычной силы тяжести. Хотя организм человека способен переносить умеренные колебания этих параметров, значительные колебания могут представлять особые проблемы. Это проявляется, когда альпинист поднимается на более значительную высоту, водолаз подвергается условиям высокого давления, а астронавт выходит в открытый космос. Любое из этих условий может оказать значительное отрицательное воздействие на мышечную деятельность и даже подвергнуть опасности жизнь человека.
В условиях высокогорья барометрическое давление понижено. Пониженное атмосферное давление означает, что понижено и парциальное давление кислорода, вследствие чего ограничивается легочная диффузия и транспорт кислорода в ткани. Снижение доставки кислорода в ткани тела приводит к гипоксии (дефициту кислорода). С другой стороны, при погружении в воду тело подвергается воздействию более высокого давления. Следовательно, подводный мир представляет собой среду высокого атмосферного давления. Вдыхаемые в таких условиях газы должны находиться под давлением, равным силе действия воды на грудную клетку. Это означает, что давление газов в легких и тканях организма значительно превышает наблюдаемое в обычных условиях (т.е. на уровне моря). Вдыхание находящихся под давлением газов практически не влияет на транспорт кислорода и диоксида углерода, однако повышенное парциальное давление некоторых газов может привести к осложнениям, угрожающим жизни человека.
Невесомость — это третья среда, которая нас интересует и в которой тело испытывает действие пониженной силы тяготения. И хотя спортсме-
244
ны, естественно, не соревнуются в космическом пространстве, в исследованиях, проводимых в космосе, установлен целый ряд физиологических изменений, представляющих определенный интерес для области физиологии мышечной деятельности и спорта.
Мы рассмотрим основные характеристики условий повышенного и пониженного атмосферного давления, а также условий микрогравитации. Выясним, как эти условия влияют на физиологические реакции, на мышечную деятельность и транспорт кислорода. Кроме того, рассмотрим факторы риска, связанные с пребыванием в этих условиях.
УСЛОВИЯ ПОНИЖЕННОГО АТМОСФЕРНОГО ДАВЛЕНИЯ:
МЫШЕЧНАЯ ДЕЯТЕЛЬНОСТЬ В УСЛОВИЯХ ВЫСОКОГОРЬЯ
Проблемы, связанные с пребыванием на высокогорье, рассматривались еще в 400 г. до н.э. [40], хотя в основном они касались условий пониженной температуры воздуха, а не ограничений, обусловленных разреженным воздухом. Заслуга первых открытий, позволивших получить представление о действии пониженного давления кислорода в условиях высокогорья, принадлежит трем ученым. Торричелли (около 1644) изобрел ртутный барометр — прибор, позволяющий точно измерить атмосферное давление газов. Спустя несколько лет (1648) Паскаль продемонстрировал снижение барометрического давления на больших высотах [40]. Позже (1777) Лавуазье описал свойства кислорода и других газов, которые обеспечивают барометрическое давление [40].
Отрицательное действие высокогорья на человека, обусловленное низким давлением кислорода (гипоксия), было обнаружено Бертом в конце 1800 г. [I]. В наше время проведение Олимпийских игр 1968 г. в Мехико на высоте 2 290 м (1,4 мили) над уровнем моря привлекло большое внимание ученых к изучению влияния условий высокогорья на мышечную деятельность. Под понятием высокогорье мы будем подразумевать высоту более 1 500 м (4 921 футов) над уровнем моря, поскольку ниже этого уровня наблюдается значительно меньшее количество физиологических изменений, влияющих на мышечную деятельность.
УСЛОВИЯ ВЫСОКОГОРЬЯ
Прежде чем приступить к изучению влияния условий высокогорья на мышечную деятельность, необходимо выяснить, что представляют собой условия пониженного атмосферного давления. Рассмотрим, как отличается газовая среда на высокогорье от газовой среды в обычных (на уровне моря) условиях.
Атмосферное давление на высокогорье
Воздух имеет массу. Барометрическое давление в любой точке Земли обусловлено массой воздуха в атмосфере над этой точкой. На уровне моря, например, воздух, составляющий земную атмосферу (приблизительно 24 км, или 38,6 миль), оказывает давление, равное 760 мм рт.ст. На вершине Эвереста —наивысшей точке Земли (8 848 м, или 29 028 футов) — давление воздуха составляет всего около 250 мм рт.ст. Эти (и другие) различия показаны на рис. 12.1.
Барометрическое давление на Земле не постоянно. Оно изменяется в зависимости от климатических условий, времени года и места, где проводится измерение. На Эвересте, например, среднее атмосферное давление колеблется от 243 мм рт.ст. в январе до почти 255 мм рт.ст. в июне и июле. Кроме того, земная атмосфера слегка выпукла на экваторе, вследствие чего атмосферное давление в этом месте немного повышено. Эти сведения, не представляющие особого интереса для людей, проживающих в местности, расположенной на уровне моря, крайне важны с точки зрения физиологии для тех, кто намерен покорить Эверест без дополнительных запасов кислорода.
Таблица 12.1. Изменения барометрического давления (Рб) и парциального давления кислорода (/'о,) на различной высоте, мм рт.ст.
Высота, м
Р.
^
0 (уровень моря) 760 159.2
1 000 674 141.2
2 000 596 124.9
3000 526 110.2
4 000 462 96.9
9 000 231 48.4
Несмотря на изменения атмосферного давления, количество газов, содержащихся в воздухе, которым мы дышим, остается неизменным в любых условиях. Независимо от высоты над уровнем моря воздух всегда содержит 20,93 % кислорода, 0,03 диоксида углерода и 79,04 % азота. Изменяется только парциальное давление. Как видно из табл. 12.1, давление молекул кислорода на различной высоте непосредственно зависит от барометрического давления, изменение парциального давления кислорода значительно влияет на градиент парциального давления между кровью и тканями. Этот вопрос будет рассматриваться ниже.
Температура воздуха в условиях высокогорья
При поднятии на каждые 150 м (около 490 футов) температура воздуха снижается на ГС. Средняя температура около вершины Эвереста составляет около —40°С, тогда как в местности,
245
Рис. 12.1.Различия в атмосферных условиях на высоте 8 900 м и на уровне моря расположенной на уровне моря, — около 15'С. Сочетание низких температур и сильных ветров в условиях высокогорья представляет значительный риск возникновения гипотермии и холодо-вых травм.
хательного испарения вследствие сухого воздуха и повышенной частоты дыхания (рассматривается дальше). Сухой воздух также повышает испарение воды вследствие потоотделения при выполнении физической нагрузки в условиях высокогорья.
Т
Высота, м
Температура, "С
0 (уровень моря) 15,0
1 000 8,5
2000 2,0
3 000 -4,5
4000 -10,9
9 000 -43,4
Из-за низких температур абсолютная влажность воздуха в условиях высокогорья чрезвычайно низка. В холодном воздухе содержится совсем немного влаги. Поэтому если даже он полностью насыщен водой (100 %-я относительная влажность), действительное количество воды, содержащейся в воздухе, невелико. Парциальное давление воды при 20°С составляет около 17 мм рт.ст. Однако при температуре воздуха —20°С оно понижается до 1 мм рт.ст. Крайне низкая влажность на большой высоте вызывает обезвоживание организма. Тело отдает большое количество воды посредством ды-
Смесь газов во вдыхаемом нами воздухе в условиях высокогорья такая же, как и в местности, расположенной на уровне моря:
кислорода — 20,93 %, диоксида углерода — 0,03, азота — 79,04 %. В то же время парциальное давление каждого газа снижается прямо пропорционально увеличению высоты. Пониженное парциальное давление кислорода ведет к снижению мышечной деятельности в условиях высокогорья вследствие пониженного градиента давления, отрицательно влияющего на транспорт кислорода в ткани.
С увеличением высоты температура воздуха снижается, что сопровождается снижением количества водяного пара в воздухе. В результате этого более сухой воздух может привести к обезвоживанию организма путем увеличения неощущаемых потерь воды организма
246
Солнечное излучение
Интенсивность солнечного излучения увеличивается на больших высотах по двум причинам. Во-первых, потому, что на высоте солнечные лучи проходят меньший объем атмосферы. Именно поэтому на высокогорье атмосфера поглощает меньше солнечного излучения, особенно ультрафиолетовых лучей. Во-вторых, в обычных условиях атмосферная влага, как правило, поглощает значительную часть солнечного излучения, однако ввиду ограниченного объема водяного пара в условиях высокогорья находящийся там человек подвергается более значительному воздействию солнечного излучения. Солнечное излучение усиливает отражение лучей от снега.
деятельности, которое, как мы уже знаем из главы 9, зависит от поступления необходимого количества кислорода в организм, его транспорта в мышцы и утилизации ими. Нарушение любого из этих этапов отрицательно сказывается на мышечной деятельности. Рассмотрим, как на эти процессы влияют условия высокогорья.
Легочная вентиляция. В покое и во время физической нагрузки легочная вентиляция на больших высотах повышается. Поскольку в условиях высокогорья в данном объеме воздуха содержится меньше молекул кислорода, человеку приходится вдыхать больше воздуха, чтобы обеспечить такое же количество кислорода, как при нормальном дыхании в обычных условиях (на уровне моря). Таким образом, увеличение вентиляции обусловлено потребностью в большем объеме воздуха.
В ОБЗОРЕ...
1. Условия высокогорья характеризуются пониженным атмосферным давлением. Пребывание на высоте 1 500 м (4 921 футов) и больше оказывает заметное воздействие с точки зрения физиологии на организм человека.
2. Содержание газов во вдыхаемом нами воздухе остается неизменным на любой высоте, в то же время парциальное давление каждого из них изменяется в зависимости от атмосферного давления.
3. С увеличением высоты температура воздуха понижается. Холодный воздух содержит мало воды, поэтому влажность воздуха в условиях высокогорья крайне низкая. Эти два фактора повышают восприимчивость к холодовым травмам и обезвоживанию в условиях высокогорья.
4. С увеличением высоты повышается интенсивность солнечного излучения, поскольку атмосфера более разрежена и в ней мало влаги.
ФИЗИОЛОГИЧЕСКИЕ РЕАКЦИИ НА УСЛОВИЯ ВЫСОКОГОРЬЯ
Рассмотрим, как влияет пребывание в условиях высокогорья на организм человека. Главное внимание обратим на те реакции организма, которые могут влиять на мышечную деятельность, а именно реакции дыхательной и сердечно-сосудистой систем, а также реакции обмена веществ.
Большая часть излагаемого материала касается физиологических реакций организма неакклиматизированных мужчин в условиях высокогорья. Это объясняется небольшим числом исследований влияния условий высокогорья на организм женщин и детей, чья чувствительность к ним может значительно отличаться.
Повышенная вентиляция легких в условиях высокогорья обусловлена меньшей плотностью воздуха
Действие повышенной вентиляции напоминает действие гипервентиляции в обычных условиях. Количество диоксида углерода в альвеолах снижается. Оксид углерода "следует" градиенту давления, поэтому большее его количество диффундирует из крови, где его давление относительно высоко, в легкие для выведения. Усиленное выделение диоксида углерода обеспечивает повышение рН крови. Это так называемый газовый, или респираторный, алкалоз. Стараясь его предотвратить, почки выделяют больше ионов двууглекислой соли. Вспомним, что они являются буфером угольной кислоты, образующейся из диоксида углерода. Таким образом, снижение концентрации ионов двууглекислой соли понижает буферную способность крови. В ней остается больше кислоты и алкалоз может легко возникнуть снова.
Диффузионная способность легких и транспорт кислорода. У человека, находящегося в состоянии покоя, в обычных условиях диффузионная способность легких неограничена. Если бы она была ограничена, в кровь поступало бы меньше кислорода и артериальное Рц оказалось бы ниже, чем альвеолярное р(,. Однако эти два показателя почти одинаковы. У такого человека количество кислорода, попадающего в кровь, определяется альвеолярным Ру и интенсивностью кровотока в легочных капиллярах.
Вспомним, что в обычных условиях (на уровне моря) парциальное давление равно 159 мм рт.ст. Однако на высоте 2 439 м (8 000 футов) оно снижается до 125 мм рт.ст. Вследствие этого понижается парциальное давление кислорода в альвеолах и капиллярах легких. Также снижается концентрация гемоглобина с 98 % в обычных условиях до приблизительно 92 % на высоте 2 439 м (8 000 футов).
247
Одно время считалось, что именно это незначительное снижение концентрации гемоглобина вызывает уменьшение МПК приблизительно на 15 %, тем самым ограничивая мышечную деятельность на высоте. Однако, как будет видно дальше, уменьшение МПК в действительности обусловлено низким -ровследствие понижения барометрического давления на высоте.
Газообмен в мышцах. В обычных условиях артериальное давление Р^ равно приблизительно 94 мм рт.ст., а парциальное давление кислорода— около 20 мм рт.ст., поэтому разница, или градиент давления, между артериальным Р^ и Рц тканей в обычных условиях составляет около 74 мм рт.ст. В то же время на высоте 2 439 м (8 000 футов) артериальное /', снижается почти до 60 мм рт.ст., тогда как Ру тканей остается неизменным — 20 мм рт.ст. Таким образом, градиент давления снижается с 74 до 40 мм рт.ст. Это почти 50 %-е снижение диффузионного градиента. Поскольку диффузионный градиент отвечает за транспорт кислорода из крови в ткани, такое изменение артериального р(,в условиях высокогорья представляет собой более важную проблему по сравнению с 5 %-м снижением концентрации гемоглобина.
Максимальное потребление кислорода. С увеличением высоты максимальное потребление кислорода снижается (рис. 12.2). МПК незначительно уменьшается до тех пор, пока атмосферное /5, не снизится за отметку 125 мм рт.ст. Обычно это происходит на высоте 1 600 м (5 248 футов), на которой расположен г.Денвер в штате Колорадо. Хотя на рисунке показано линейное уменьшение МПК с увеличением высоты, все же его уменьшение бо
лее точно отражает снижение барометрического давления [41]. В частности, МПК уменьшается с прогрессивно большей скоростью (экспоненциально) по мере падения парциального давления кислорода в результате увеличения высоты.
Ниже высоты 1 600 м (5 248 футов) условия высокогорья незначительно влияют на МПК и мышечную деятельность, требующую проявления выносливости. Если же высота превышает 1 600м, МПК снижается почти на 11 % с каждым увеличением высоты на 1 000 м (3 281 футов)
Как видно из рис. 12.3, у участников экспедиции на Эверест 1981 г. МПК уменьшилось с 62 (в
нормальных условиях) до 15 мл-кг^-мин' у вершины горы. Обычные потребности в кислороде в состоянии покоя составляют около 5 мл-кг^-мин"', поэтому без дополнительного резерва кислорода альпинисты были бы способны выполнить лишь незначительные физические усилия на такой высоте. Исследование, проведенное Пафом и соавт.,
показало, что мужчины с МПК 50 мл-кг'-мин' в обычных условиях не смогли бы выполнять физическую нафузку или даже передвигаться у вершины Эвереста, поскольку на этой высоте их МПК понизилось бы до 5 мл-кг^-мин"'. Большинство обычных людей с МПК ниже 50 мл-кг-1-мин"1 не смогли бы выжить без дополнительного резерва кислорода на вершине Эвереста, поскольку их МПК было бы слишком низким, чтобы поддержать функцию тканей. Его хватило бы только на удовлетворение потребностей организма в состоянии покоя.
Рис. 12.2. Снижение МПК при понижении барометрического давления (Р^) и парциального давления кислорода (Ру) в условиях высокогорья. Данные Бускирка и соавт. (1967)
Рис. 12.3.МП К относительно Ру вдыхаемого воздуха. Данные Уэста и соавт. (1983), Пауэрса и Эдвардса (1994)
248
Реакции сердечно-сосудистой системы на условия высокогорья
Сердечно-сосудистая система подобно респираторной в условиях высокогорья подвергается значительным нагрузкам. Большие изменения в деятельности сердечно-сосудистой системы направлены на компенсацию пониженного парциального давления кислорода. Рассмотрим некоторые из них.
Объем крови. Вскоре после прибытия человека в высокогорный район, объем плазмы начинает постепенно уменьшаться и к концу первых нескольких недель это уменьшение прекращается. В результате этого увеличивается количество эритроцитов на единицу крови, что обеспечивает доставку в мышцы большего количества кислорода при данном сердечном выбросе. Первоначальное уменьшение объема плазмы вызывает незначительное изменение общего количества эритроцитов, что приводит к увеличению гематокрита, и меньшему объему крови, чем на меньших высотах. Постепенно уменьшенный объем плазмы восстанавливается. Кроме того, вследствие продолжающегося пребывания в условиях высокогорья усиливается образование эритроцитов, что обусловливает увеличение их общего количества. Эти изменения, в конечном итоге, приводят к увеличению общего объема крови, частично компенсирующего пониженное Р^.
Сердечный выброс. Как мы выяснили, количество кислорода, транспортируемого в мышцы данным объемом крови, ограничено в условиях высокогорья, поскольку пониженное Р^ снижает градиент диффузии. Естественным способом компенсации представляется увеличение объема крови, транспортируемой в активные мышцы. В покое и при выполнении субмаксимальной нагрузки это осуществляется за счет увеличения сердечного выброса. Вспомним, что сердечный выброс — произведение систолического объема крови на ЧСС, следовательно, увеличение одной из составляющих приведет к увеличению сердечного выброса.
Выполнение стандартной субмаксимальной работы в первые несколько часов пребывания в условиях высокогорья ведет к увеличению ЧСС и снижению систолического объема крови (вследствие уменьшенного объема плазмы). Увеличение ЧСС компенсирует уменьшение систолического объема крови и приводит к некоторому повышению сердечного выброса. В то же время длительное поддержание такой ЧСС при физической нагрузке нельзя считать эффективным способом обеспечения достаточного количества кислорода в активные ткани организма. Через несколько дней мышцы начинают извлекать из крови больше кислорода (увеличивая артериовенозную разность), что приводит к снижению потребности в повышенном сердечном выбросе и, следовательно, повышенной ЧСС. Установлено, что через 10 дней
пребывания в условиях высокогорья сердечный выброс при данной физической нагрузке оказывается ниже, чем он был в обычных условиях до того, как развились адаптационные реакции к условиям высокогорья [15].
В условиях высокогорья при максимальных или изнурительных уровнях работы уменьшаются как максимальный систолический объем крови, так и максимальная ЧСС. Вследствие этого снижается максимальный сердечный выброс. Сочетанием уменьшенного сердечного выброса и пониженного градиента диффузии можно объяснить уменьшение МПК и ухудшение аэробной деятельности в условиях высокогорья. Таким образом, условия пониженного атмосферного давления ограничивают доставку кислорода в мышцы, снижая способность выполнять аэробную работу высокой интенсивности.