Научная и учебная работа на кафедре гидробиологии. Научные знания для целей социально-экономического развития и безопасности России



бет1/29
Дата04.06.2016
өлшемі2.06 Mb.
#113733
  1   2   3   4   5   6   7   8   9   ...   29

Ecological Studies, Hazards, Solutions, 2006, Vol. 11

Научная и учебная работа на кафедре гидробиологии. Научные знания для целей социально-экономического развития и безопасности России (C.6-10)
Многие из областей гидробиологии вносят существенный вклад в социально - экономическое развитие России, являются фактором экономического роста и стабильности, экологической и продовольственной безопасности. Можем отметить среди этих областей гидробиологии те, которые создают научную основу для понимания и разработки следующих вопросов.

1. Изучение вклада водных экосистем и гидробионтов в формирование и поддержание состава атмосферного воздуха и тем самым в формирование и стабильность климатической системы Земли. 2. Изучение вклада гидробионтов в формирование и поддержание качества вод в пресных и морских водоемах. 3. Создание научной основы для рыболовства и аквакультуры ценных в пищевом отношении видов рыб. 4. Создание научной основы для добычи других морепродуктов и биоресурсов пресных водоемов, которые не являются рыбой (примеры таких биоресурсы - водоросли, беспозвоночные). 5. Изучение роли гидробионтов как биоресурсов для фармакологии и медицины. 6. Изучение роли водных экосистем в связи с вкладом в поддержание социальной стабильности. 7. Разработка объективных показателей, характеризующих биоресурсы и экологические ресурсы – показателей, необходимых для адекватного анализа, прогнозирования и управления экономикой. 8. Обеспечение других факторов, важных для экономики и устойчивого социально-экономического развития. Учитывая важность отмеченных выше пунктов для стабильности и жизнеобеспечения населения России, важность гидробионтов для поддержания жизненно необходимых параметров водных ресурсов и здоровья среды обитания, подчеркнем особую роль водных экосистем и организмов – и наук, изучающих их состояние, создающих основу их устойчивого использования – для экономического роста РФ, безопасности России и граждан нашего общества.

Основные направления исследований на кафедре гидробиологии биологического факультета МГУ связаны с научными интересами докторов наук, работающих на кафедре:

В. Д. Федоров (заведующий кафедрой) - фитопланктон; общие фундаментальные и прикладные вопросы экологии и гидробиологии; структура, функционирование и устойчивость сообществ гидробионтов; совершенствование преподавания вопросов гидробиологии, общей и водной экологии; экологическое прогнозирование; история гидробиологии и экологии; приложение фундаментальных гидробиологических знаний к решению экономических и социальных проблем Российской Федерации; экологическое и природоохранное образование;

А.И.Азовский - экология бентоса, структура сообществ, методы анализа данных, теоретическая экология;

В. Н. Безносов – экологический аудит, экология природно-техногенных систем, экологический менеджмент, инженерная экология и гидробиология, палеоэкология;

И. В. Бурковский - морская прибрежная экосистема, структурно-функциональная организация морских сообществ, экология бентосных организмов, протистология;

Л.Д.Гапочка - адаптация и устойчивость гидробионтов к антропогенным, в том числе химическим воздействиям (популяционные аспекты); влияние электромагнитного излучения низкой интенсивности на гидробионтов (микроводоросли, простейшие, дафнии) и на токсичность растворов;

И.А.Жирков - структура биосферы, биогеография, бентос морей, полихеты, Арктика;

В.В.Ильинский - экология водных микроорганизмов, биодеградация нефтяных загрязнений;

Л. В. Ильяш - фитопланктон, продуктивность, фотосинтез, взаимовлияния планктонных водорослей;

В.И.Капков - водоросли, оценка состояния прибрежных морских экосистем, биомониторинг,

С.А.Остроумов - самоочищение воды; биохим. экология и гидробиология; действие ПАВ на организмы; фильтраторы; сохранение биоразнообразия; гидробиол. факторы безопасности и экономическ. роста; оценка водн. экосистем; экобезопасность; совершенствование преподавания водн. экологии;

С. Е. Плеханов - загрязнение пресных вод, физиология водорослей, фотосинтез, внеклеточные метаболиты;

А. П. Садчиков - первичная продукция, фитопланктон, деструкция, бактериопланктон, зоопланктон и его питание, макрофиты и их продукция, трофология, водная биотехнология;

О. Ф. Филенко - водная токсикология, биотестирование, экологическое нормирование, средства подавления вредной водной биоты;

В.Н. Хромов - продукция фитопланктона, перифитона и макрофитов, структурные характеристики фитопланктона и перифитона в мониторинге качества вод, биоиндикация.

По мнению независимых экспертов, в ряде научных областей разработки научных сотрудников кафедры не имеют равноценных мировых аналогов. Иными словами, соответствующие работы научных сотрудников опережают мировой уровень науки. Не пытаясь перечислить все из этих направлений, упомянем лишь некоторые: изучение биологии, систематики и экологии некоторых групп организмов, в том числе псаммофильных протист, водных грибов и грибоподобных организмов, бентических организмов, полихет и др.; изучение прибрежных сообществ, фитопланктона Белого моря; изучение тонкой структуры популяций микроводорослей в связи с проблемами тестирования опасных химических веществ; концептуальное совершенствование методологии оценки потенциальной опасности воздействий на окружающую среду и организмы, в том числе опасности химического загрязнения; уменьшение опасности загрязнения среды путем использования экологических механизмов самоочищения водной среды; создание приборов для непрерывной регистрации продукции и деструкции в водоеме в режиме реального времени; воздействие электромагнитного излучения на некоторые группы организмов; разработка проблемы масштаба пространства-времени в организации живых систем на надорганизменном уровне; выявление экологического аналога генетической репарации; дополнение и развитие концепций В.И.Вернадского об аппарате биосферы и функциях живого вещества, эколого-экономическая оценка стоимости воды как ресурса.

Ряд работ научных сотрудников кафедры вносят вклад в социально-экономическое развитие России. Научно-исследовательская работа научных сотрудников служит базой для совершенствования и модернизации учебного процесса. Многие научные сотрудники читают уникальные лекционные курсы (по общей и частной гидробиологии, общей экологии, фитопланктону, бентосу, экотоксикологии, прикладным проблемам гидробиологии, математическим методам обработки эмпирического материала и др.). Научные сотрудники кафедры приглашались для чтения лекций на других факультетах МГУ – философском, геологическом, географическом, факультете психологии и др. Результаты работы всех других научных сотрудников, прямо не участвующих в лекционной работе, существенным образом используются при обучении студентов в форме совершенствования практикума и практик, выполнении курсовых и дипломных работ, экспертизе и критической оценке работ студентов. Принципиальное значение имеет то, что научно-исследовательская работа научных сотрудников кафедры создает атмосферу творческого поиска и профессиональной требовательности, что заставляет студентов не по-школярски относиться к обучению и выполнению курсовых и дипломных работ. Это формирует выпускников кафедры гидробиологии МГУ как уникальных специалистов, которые обладают не только знаниями (не суммой зазубренных и устаревающих фактов), но имеют гораздо больше: способность творчески реагировать на новые задачи и проблемы, генерировать инновации в целях социального и экономического развития РФ.

В качестве иллюстрации можно отметить некоторые примеры непосредственного участия научных сотрудников и выпускников кафедры гидробиологии в решении прикладных задач на благо экономического роста, безопасности и стабильности РФ. Среди этих работ - сохранение водных и водно-биологических ресурсов, вклад в стабильное водоснабжение г. Москвы (работа Мосводоканала, контроль водохранилищ-источников питьевой воды для г. Москвы), разработка методологии экологического мониторинга, аудита, оценок и экспертиз, в том числе природно-техногенных комплексов (изучение водоемов-охладителей АЭС и др.); среди других примеров – участие в разработке методологии и в проведении экологических экспертиз крупных экономически важных проектов – проекта газопровода Новороссийск-Турция-Иран ("Голубой поток"), проектов терминалов морских нефтегазопроводов (Новороссийск), проектов разработки крупнейшего в мире морского месторождения газа (Штокмановского месторождения); участие в разработке экологического законодательства по заданию Минприроды РФ; разработка методов очищения вод и почв с использованием биотехнологических подходов, гидробионтов и микроорганизмов; выявление новых форм опасности техногенного воздействия на организмы и сообщества (химическое, электромагнитное, тепловое воздействие), участие в экспертизе и окончательной оценке наукоемких проектов, представленных в центральные московские учреждения из Сибири (Красноярск; проект по уменьшению негативного воздействия лесозаготовок и лесной промышленности на экосистемы) и Дагестана (проект по изучению и использованию ресурсов Каспия); разработка мер профилактики и предотвращения опасности некоторых форм биотерроризма и др. Научные сотрудники кафедры консультируют сотрудников правительства Москвы, аппарата Министерства природных ресурсов, МЧС, Минобороны, Мосводоканала, Межведомственной ихтиологической комиссии и других министерств и государственных структур.

На базе кафедры и силами оргкомитета, основу которого составляют сотрудники кафедры, регулярно проводятся международная конференции «Водные экосистемы и организмы". 18-19 мая 2004 г. в Москве прошла шестая конференция из этой серии, 15 октября 2005 г. – седьмая конференция. Обе эти конференции посвящены 250-летию Московского университета. Девиз конференций - "Гидробиология как фактор экономического роста". Эти конференции проводятся ежегодно с 1999 года в Москве под эгидой Гидробиологического общества, Научного совета РАН по гидробиологии и ихтиологии, Межведомственной Ихтиологической Комиссии, Научного совета РАН по экологии биологических систем, научного совета РАН по изучению и охране культурного и природного наследия, нескольких других научных советов РАН, Координационного совета МГУ "Науки о Жизни", Международного союза эко-этики, Ассоциации водно-экологических наук и других организаций.

Были представлены доклады ученых России, Украины, США, Швейцарии, Израиля, Испании и других стран. Конференции осветили научные результаты исследователей научных учреждений Москвы, Владивостока, Красноярска, Новосибирска, Тюмени, Оренбурга, Ростова, Мурманска, Севастополя и других городов. Среди авторов представленных докладов – сотрудники Министерства природных ресурсов России, а также ряда организаций, ведущих прикладные разработки.

Работы, представленные на конференциях этой серии, отражали достижения в области гидробиологии, водной экологии, наук об окружающей среде, причем многие исследования опережали уровень зарубежных разработок по данному вопросу. Практически все представленные работы имели значение для создания научной основы решения практических проблем, связанных с экономически ростом и безопасностью России, с выполнением Россией международных обязательств по ранее подписанным конвенциям и другим документам по сохранению природной среды.

О работе конференций писали многие издания – газета "Московский университет", журналы Природа" (Москва), "Биология моря" (Владивосток), "Сибирский экологический журнал" (Новосибирск), "Вода и экология" (С.Петербург), "Вестник РАЕН" (Москва), "Гидробиологический журнал" (Киев) и другие.

Внося вклад в укрепление международного статуса российской и университетской науки, кафедра гидробиологии активно участвует в основных международных мероприятиях в области гидробиологии, лимнологии, водной экологии, в проведении международного рейтинга на присвоение почетного звания "Водный эколог года", обладает весом и решающим словом при подведении итогов рейтинга, распространяющегося не только на территорию РФ.

Сотрудников кафедры приглашали выступить с лекциями и докладами во многих городах и странах. Выпускники кафедры (включая и аспирантуру) работают во многих университетах и лабораториях России, СНГ (Украина, Казахстан, Армения) и дальнего зарубежья (Англия, Португалия, США, Финляндия).

По обоснованным оценкам, вклад водных организмов и экосистем в ресурсное обеспечение валового внутреннего продукта (ВВП) Российской Федерации составляет до 30% от величины ВВП (Вестник РАН, 2003, том 73, № 3, стр. 232 - 238). Ослабление или потеря части научного потенциала, обеспечивающего мониторинг и сохранение организмов и экосистем, которые ответственны за этот вклад, порождает опасность утраты 30% ВВП РФ. Выявление роли гидробиологических исследований для укрепления экономического потенциала России еще раз подтверждает слова Луи Пастера: "Наука должна быть самым возвышенным воплощением отечества, ибо из всех народов первым будет всегда тот, который опередит другие в области мысли и умственной деятельности".

Литература

Федоров В.Д. (ред.) Программы спецкурсов. М.: МГУ-Ойкос, 2002, 136 с.;

История кафедры гидробиологии (в протоколах, документах и воспоминаниях). / Ред. В.Д.Федоров. М.: Изд-во "Ойкос". 2003. 144 с.

80 лет кафедре гидробиологии / Ред. В.Д.Федоров. М.: КМК Пресс. 2004. 264 с.

С.А.О.

SCREENING AQUATIC PLANTS FOR NITRATE REMOVAL POTENTIAL p.11-12.
L.L. Behrends, E. Bailey, L. Houck, P. Jansen, P. Pier, T. Yost
Department of Air Land and Water Sciences

Tennessee Valley Authority

Muscle Shoals, AL 35633

  

Engineered constructed wetlands are being developed to remove nutrients from animal wastewater treatment systems. In these systems nitrate removal can be accomplished by plant uptake, microbial denitrification or both. Nitrate can be biologically denitrified to nitrogen gas, but the denitrifying bacteria require low redox conditions and organic carbon to complete the process. Many plant species produce sugar-like compounds which are subsequently translocated to the root zone and leaked into the rhizosphere.  This provides an available carbon source for enhancing denitrification.



Studies were conducted at TVA’s Constructed Wetland Research Center (Muscle Shoals, AL), to identify aquatic plant species that have the capacity to enhance removal of nitrate via plant uptake and denitrification. Replicated pot studies (3 replicates per treatment), were established in an environmentally controlled greenhouse to monitor the impact of eight plant species, 4 rearing environments (open water vs gravel substrate; with or without duckweeds), and plant by environment interactions with respect to redox potential and nitrate removal dynamics. Nitrate removal rates were normalized to mg N03 removed per kg of plant (dry matter basis) / per unit time. In addition, N-15 labeled nitrate was used in one of the sub-studies to evaluate the relative removal of nitrate via plant uptake and denitrification. Data related to plant productivity, redox potential, chemical oxygen demand, and nitrate removal were analyzed using a 2-way analysis of variance in factorial design.

Redox values were found to differ significantly among plant species and over sampling dates (P<0.05). Canary grass in gravel substrates had the lowest redox potential, and irrespective of plant species, redox potential trended lower over time. Potassium nitrate (50 mg/L as N) was batch loaded into the microcosms on several occasions and monitored for eight day periods. Canary grass, cattail, and common reed in gravel substrates were all able to remove nitrate to levels less than 10 mg/L) within 4 days. Yellow iris and Parrots feather were able to reduce nitrate to comparable levels after eight days.

Dry matter plant production (g dry matter/pot) was significantly higher in gravel vs water based systems (P<0.05). In gravel based systems, dry matter plant production ranged from less than 50 g/pot (dwarf papyrus) to over 135 g/pot (common reed). In water based systems, dry matter plant production ranged from less than 10 g/pot (yellow iris) to 93 g/pot (cattail). Additional information will be provided related to factors influencing plant nitrate uptake and denitrification.

METAL CONCENTRATIONS IN FISH SPECIES (MUGIL CEPHALUS AND MULLUS BARBATUS ) FROM THE NORTHEAST MEDITERRANEAN SEA p.12.

Hikmet Y. Çoğun, T. A. Yüzereroğlu, F. Kargın, Ö. Firat, G. Gök

University of Çukurova, Science and Letters Faculty, Biology Department 01330 Yüreğir/ ADANA, Turkey

E-mail address : hcogun@cu.edu.tr (H. Y. Çoğun)
Samples of Mugil cephalus and Mullus barbatus were collected in the Northeast Mediterranean coast of Turkey the contents of cadmium, copper, iron, zinc and lead in the liver, gill and muscle tissues were determined by atomic absorption spectrophotometry.

Except for lead, highest levels of each metal were found in the liver and this was followed by the gill and muscle in both species. Among the metals analyzed, Cu, Zn and Fe were the most abundant in the different tissues while Cd and Pb were the least abundant both in Mugil cephalus and Mullus barbatus. Metals in both species show seasonal variations. In general, the highest concentrations were detected for all metals in summer.

 

BIODIESEL: A CLEANER ALTERNATIVE FUEL. p.12-13.

Jessica L. Hoehn

University of Georgia, Athens, Georgia


Biodiesel is a renewable, clean-burning, non-toxic, and biodegradable alternative fuel that can be used in any diesel engine without the need for modification. Biodiesel can also be substituted or combined with any level of petroleum diesel. The fuel is primarily produced from plant oils, animal fats, or by recycling used oil.
The University of Georgia has been studying the use of biodiesel for over twenty years. One advantage the University has is that the state of Georgia is the largest producer of peanuts in the United States, which is an ideal source for such fuel. Presently, the University is working on producing a high-yield peanut oil crop that will not be competition to peanut producing farmers. This oil is used in the production of biodiesel where it is mixed with lye and methanol in a process called transesterification, which leaves methyl esters and glycerin behind. The University is working with plant geneticists to produce a high-yield peanut that will have a poor taste to ensure that there are no harmful effects on the peanut producing economy. Economically, the benefit of implementing the use of biodiesel reduces dependency on foreign oil while creating a new market for farmers.
Biodiesel is known as a “carbon neutral” fuel meaning that the carbon dioxide released into the atmosphere is taken up by the next year’s crops. Studies have proven that there are drastic decreases in hydrocarbons, particulate matter, sulfur dioxides, sulfates, and carbon monoxide. Biodiesel has demonstrated reductions in carcinogenic compounds, which have been linked to causing asthma, especially in children whose lungs are more often affected by air pollutants. Therefore, the future examination and implementation of this new peanut crop can be used to further the use of biodiesel as an alternative fuel and is a crucial step to lowering pollution levels in a petroleum-based economy.


TOTAL DISSOLVED SULFIDE MAY CONFOUND

MARINE SEDIMENT TOXICITY EVALUATIONS. p.13-14.
Caldwell, Richard S.

Northwestern Aquatic Sciences, Newport, OR, U.S.A.


Sediment toxicity bioassays are an important tool for sediment quality management and have been employed in the U.S.A., particularly in Puget Sound, since the late-1980s. Recently it has been increasingly recognized that naturally occurring sediment toxicants, especially hydrogen sulfide and ammonia, may confound the interpretation of bioassay results with respect to chemicals of concern, e.g. PAHs, organochlorines, metals, etc. Data from actual regulatory amphipod bioassays are presented in an effort to characterize the confounding potential of total dissolved sulfide (TDS) in sediment management evaluations. Initial pore water TDS concentrations of 20-100 mg/L (640-3200 mM) were frequently observed in test sediments obtained from study sites with high wood wastes or other sources of organic enrichment. A strong positive correlation was observed between TDS and amphipod mortality in 10-day acute sediment bioassays. Sediment TDS concentrations correlating with 50% amphipod mortality ranged widely between ca. 25-75 mg/L (800-2400 mM) as influenced by study design variables, especially time of TDS sample collection. Because ammonia-N concentrations in the pore water tended to co-vary with TDS, and may have affected toxicity, the contribution of each was evaluated in a series of sediments in which TDS ranged from <10 to 130 mg/L and ammonia-N ranged from 8 to 62 mg/L. Corresponding 96-hr LC50s were from >100% pore water to 10% pore water. Aeration treatment which reduced TDS by an average 93%, but left ammonia-N concentrations unaffected, largely abolished pore water toxicity, demonstrating that TDS, not ammonia, was the primary toxic agent.
Contact Author: Richard S. Caldwell, Northwestern Aquatic Sciences

P.O. Box 1437, Newport, OR, U.S.A.

T 541-265-7225, F 541-265-2799, rcaldwell@nwaquatic.com


VERTICAL DISTRIBUTION OF EPIPHYTIC DIATOMS ON TYPHA LATIFOLIA L. AND PHRAGMITES AUSTRALIS TRIM. IN AMIR KALAYEH LAGOON, IRAN. p.14.

T. Nejadsattari1,3, M.Fallahi2, H.Ramzanzadeh3 & S. Shojaii3
1. Department of Plant Biology, Faculty of Basic Sciences,

Islamic Azad University, Science & Research Branch, Tehran, Iran.

2. Fisheries Research Center, Gilan Province, Anzali, Iran.

3. Department of Biology, Faculty of Sciences, University of Tehran, Tehran, Iran.

Diatoms are important part of epiphytic communities in aquatic ecosystems. A research was conducted from November 2002 through October 2003 in Amir Kalayeh Lagoon, Iran. Epiphytic diatom samples were collected from Typha latifolia L. and Phragmites australis Trim. In each sampling occasions triplicate samples were gathered as following procedure. Upper parts of macrophytes were cut 5 cm below water surface and withdrawn; then, fourthy centimeters of Typha leaves and Phragmites shoot were cut and divided in 10 cm sections. These sections were placed in 125 ml vials and were fixed using 4% formaldehyde. In the laboratory diatoms were brushed and removed from substrate. They were cleaned using standard procedures and permanent mounts were prepared. Identification was done using a wild M20 microscope at 1000× and enumeration of diatoms was done at 200×. Using ANOVA study revealed that there were difference in population density at 10 cm intervals, but differences were not significant (P>0.05). All species were found in the sections. It seems that at least at 10 cm intervals diatom populations do not show any specific zonations.

OCCURENCE OF CHLOROPHYCEAN ALGAE IN THE ARTIFICIAL PONDS OF THE NATIONAL BOTANICAL GARDEN, IRAN. p.15.

Nejadsattari1, T., Z. Shariatmadari1 and Z. Jamzad2

1. Department of Plant Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran

2. Research Institute of Forests and Rangelands, Department of Botany, Tehran, Iran

Five aquatic sites of National Botanical Garden of Iran were sampled at monthly intervals from December 2003 through November 2004. 68 genera and species of 10 families and 6 orders of planktonic Chlorophyceae were identified. Among the families Desmidaceae with 22 species showed the highest species diversity. Scenedesmaceae (15 species), Oocystaceae (14 species), Hydrodictyaceae (7 spices), Ulotricaceae (3 species) Zygnemataceae (2 species), Volvocaceae (2 species) and Cladophoraceae, Oedogoniaceae and Trentephliaceae each represented only 1 species. High population densities of species were observed in the warm months.



A NEW CLASS OF MOLECULES THAT REGULATE THE BIOENERGETICS OF THE BIOSPHERE: ECOLOGICAL CHEMOREGULATORS. p.15-16.

S.A.Ostroumov


Department of Hydrobiology, Faculty of Biology, Moscow State University, Moscow 119992

Almost all aspects of life are engineered at the molecular level.



Francis Crick (1916-2004)

As a result of our studies in the area of frontiers between biochemistry and ecology [1-3], we have identified a new class of molecules that fulfill an important biological function. Those molecules form a structurally diverse group of chemical substances. What unites those structurally diverse molecules is their function. They all contribute to forming a certain pattern of the trophic chains and trophic webs in the biosphere. The trophic chains are channels through which the flows of matter and energy occur in the biosphere. Therefore the molecules regulate the energy flows together with other factors (both biotic and abiotic) which influence the patterns of geochemical flows in the biosphere. We baptized those molecules under the name of 'ecological chemoregulators' and 'ecological chemomediators' [1]. The latter term underlines the fact that many of those molecules serve as mediators in the interactions among organisms.

Usually a principal distinction is seen between the natural molecules that have the function of a regulator and the molecules of xenobiotics that may produce a significant biological effects on organisms. However both classes of molecules (natural ecological chemoregulators and man-made xenobiotics) have something in common: the both classes of molecules produce some pronounced bioeffects when they interact with the target organisms. Therefore we introduced also the term 'ecological chemoeffectors' [1-3]. The basic postulate that is to be supported or rejected by further research is: The ecological chemoeffectors are potent factors that can improve or deteriorate the ecological balance in the biosphere. The flows of energy through trophic chains are an important part of the bioenergetics of the biosphere.

The area of science to study the biochemical aspects of the biosphere, including the role of the molecules of ecological chemoregulators, forms a special scientific discipline. We suggested to consider that discipline as biochemical ecology. When the role of molecules in regulating aquatic ecosystems is studies, we consider that area of science as biochemical hydrobiology [4 ]. The role of all those molecules as factors that regulate the energetics of the biosphere will attract more attention in future as the risk of global change and global warming becomes more visible.

[1] Ostroumov S.A. Introduction to Bio-Chemical Ecology. 1986. M.: Moscow University Press. 176 p.

[2] Telitchenko M.M., Ostroumov S.A. Introduction to Problems of Bio-chemical Ecology: Biotechnology, Agriculture, Environment. 1990. Nauka Press, Moscow. 288 p.

[3] Ostroumov S.A. Concepts of biochemical ecology: ecological chemomediators, ecological chemoregulators, ecological chemoeffectors // Ecological Studies, Hazards, Solutions. 2003. Vol. 6. P.105-107.

[4] Idem. Facts and concepts of ecology. 1. New scientific disciplines: biochemical ecology and biochemical hydrobiology. // Ecological Studies, Hazards, Solutions. 2004. Vol. 7. P. 106-111.



CHEMICAL CONTAMINATION WITH OIL HYDROCARBONS INHIBITS THE PROCESS OF WATER FILTRATION BY MYTILUS GALLOPROVINCIALIS p.16-17.

S.A.Ostroumov

(Moscow State University, Moscow, Russia 119992)
Man is everywhere a disturbing agent. Wherever he plants his foot, the harmonies of nature are turned to discords.

George Perkins Marsh (1801-1882)

Oil hydrocarbons produce a number of effects on marine organisms, including the marine bivalves Mytilus galloprovincialis (e.g., Mironov, 1985; 1988). Filtering rates of M. galloprovincialis were studied (e.g., Shulman, Finenko, 1990). This is important as filter-feeders contribute to the repair of water quality (e.g., Ostroumov, 2002). We studied the effects of petroleum hydrocarbons on water filtration by M. galloprovincialis. In a typical experiment, the mussels M. galloprovincialis (average wet weight with shells 6.1 g) were incubated in seawater with the addition of the oil suspension so that the final concentration of the oil was 8 microliters per 1 l of seawater. In the process of water filtration, the suspended matter was removed from the water. The process was monitored using measurements of the optical density of the water with seston. A pronounced inhibition of the filtration rate was found that led to an increase in the optical density of the water with seston in the beaker with oil as compared to that in the control beaker with bivalves without oil. As a result of the inhibition, the optical density (550 nm) of the seawater with seston in the beaker with oil was 157.1 – 977.8 % of that in the control. The incubation time was 10 – 140 min, temperature 26.4° C. Some degree of inhibition of the filtration rate was also found in a series of similar experiments where the concentration of the oil suspension was 2 – 4 microliters per 1 l of the seawater. The data received are in accord with previous data obtained by the author, who had studied effects of other contaminants - e.g., surfactants and detergents – in the same experimental system (Ostroumov, 2002). The data contributes to better understanding of the interaction between pollutants and the ecologically important functioning of the filter feeders.

The author thanks G.E.Shulman, G.A.Finenko, Z.A. Romanova, A.A.Soldatov and other colleagues at the Institute of Biology of Southerns Seas NASU for help, P.Wangersky for advice, McArthur Foundation and Open Society Foundation for support of the first stage of the work.



DEVELOPING THE CONCEPTUAL APPARATUS IN THE AREA OF BIOCHEMICAL ECOLOGY (AND CHEMICAL COMMUNICATION). SEEKING AND DEVELOPING ADEQUATE TERMINOLOGY. p.17

S.A.Ostroumov

(Faculty of Biology, Moscow State University, Moscow 119992)
It is proposed to introduce new fundamental concepts and terms 'ecological chemomediators' and 'ecological chemoregulators' [1] which include a variety of the chemicals that are being produced by organisms and have the function of transfer of information to other organisms. The proposed concepts and terms were found adequate and useful and were actively used by other scientists (e.g. [6]; see also [2]).

Also, a new variant of definition of 'pheromone' is proposed [3,4]. The new definition takes into account new data on pheromones of mammals, reptiles, fish, arthropods, fungi, algae, and other organisms.

The area of application of these conceptual innovations includes not only biochemical ecology and chemical communication of bacteria, fungi, plants and animals, but also some aspects of human ecology, human behavior and biological psychiatry [5].

The author thanks Prof. A.O.Kasumyan and Prof. A.V.Kaluev for discussions.

References

1. Ostroumov S.A. Introduction to Bio-Chemical Ecology. 1986. Moscow. Moscow University Press. 176 p.

2. Ostroumov S.A. Addition to the concept of the main functions of the living matter developed by V.I.Vernadsky: ecological chemomediators and chemoregulators // Ecological Studies, Hazards, Solutions, 2001a. vol. 5. p.22.

3. Ostroumov S. A. Detalization of the fundamental concepts of biochemical ecology: a new definition of the term 'pheromone' // Ecological Studies, Hazards, Solutions, 2001b. vol. 5. p. 83.

4. Ostroumov S.A. The functions of the living matter in the biosphere // Vestnik RAN (Herald of the Russian Academy of Sciences). 2003a. V. 73. No. 3. P. 232-238, [A new definition of the term 'pheromones']

5. Ostroumov S. A. 2003b. Developing the conceptual apparatus in the area of chemical communication and seeking adequate terminology. Presentation at the 7th Multidisciplinary Conference Stress and Behavior (Moscow, Russia, 26-28 February 2003), (Russian Society of Biological Psychiatry, International Brain Research Organization).

6. Rozenberg G.S., Mozgovoi D.P., Gelashvili D.B. Ecology: elements of theoretical constructs of modern ecology. 1999. Samara. Samara Scientific Center of the Russian Academy of Sciences. -396 p.
BIOLOGICAL AND HYDROBIOLOGICAL FACTORS TO PREVENT EXTREME WEATHER EVENTS AND CATASTROPHIC CLIMATE CHANGES: lessons from Hurricane Katrina. p.18-22.

S.A. Ostroumov


The material below in part 1 is based on what was available from Internet at various sites. The theoretical analysis of links among the weather events and the global change, and of the role of biota in regulation of biospheric parameters is based on our previous publication(s) (Ostroumov, 2005).

Part 1.

1. Some facts about Hurricane Katrina (this section is based on the text about Katrina available from Internet 16.09.05). In 2005, August 23-31, Katrina affected and damaged Bahamas and the coastal regions of Florida, Louisiana (especially Greater New Orleans), Mississippi, and Alabama with winds of 160 mph (255 km/h) - 175 mph (280 km/h) (the information on Katrina was taken from internet, 17.09.2005). The damages estimated as high as $200 billion (costliest Atlantic hurricane of all time).

Katrina, which made landfall near New Orleans, Louisiana, on August 29, 2005, was the most destructive and one of the costliest tropical cyclones to hit the United States. The hurricane's storm surge breached the levees that protected New Orleans from Lake Pontchartrain, flooding most of the city. The storm also damaged Louisiana, Mississippi, and Alabama.

Recent estimates have placed the death toll in the thousands and the damage higher than $100 billion, topping Hurricane Andrew as the costliest natural disaster in U.S. history. Over a million people were displaced — a humanitarian crisis on a scale unseen in the U.S. since the Great Depression.

The hurricane made landfall at 6:10 am CDT. After 11:00 am CDT, several sections of the levee system in New Orleans collapsed. Mandatory evacuation of New Orleans had been ordered by the mayor Ray Nagin before the hurricane struck, on Aug 28. The order was repeated on Aug 31. By early September, people were being forcibly evacuated, mostly by bus to neighboring states.

Federal disaster declarations blanketed 90,000 square miles (233,000 km²) of the United States, an area almost as large as the United Kingdom. The hurricane left an estimated five million people without power, and it may take up to two months for all power to be restored. On Sept 3, Homeland Security Secretary Michael Chertoff described the aftermath of Hurricane Katrina as "probably the worst catastrophe, or set of catastrophes" in the country's history, referring to the hurricane itself plus the flooding of New Orleans.

The U.S. National Hurricane Center (NHC) reported on Aug 23 that Tropical Depression Twelve had formed over the southeastern Bahamas. The NHC gave this storm a new number because a second disturbance merged with the remains of Tropical Depression Ten on Aug 20, and there is no way to tell whether the remnants of Tropical Depression Ten should be credited with this storm. The system was upgraded to Tropical Storm Katrina on the morning of Aug 24. Katrina became the fourth hurricane of the 2005 season on Aug 25 and made landfall later that day around 6:30 p.m. between Hallandale Beach and Aventura, Florida.

Aug 26: Hurricane Katrina weakened over land on, becoming a tropical storm before growing to a Category 2 hurricane with winds of 100 mph. It became clear the storm was headed for Mississippi and Louisiana.

Aug 27: the storm was upgraded to Category 3 intensity (major hurricane) and at 12:40 a.m. CDT (0540 UTC) on Aug 28, Katrina was upgraded to Category 4. Later that morning, Katrina went through a period of rapid intensification, with its maximum sustained winds strengthening to 175 mph (281 km/h) well above the Category 5 threshold of 156 mph (250 km/h)), gusts of 215 mph (344 km/h) and central pressure of 23.635 inches (906 mbar) (hPa) by 1:00 p.m. CDT. It later reached a minimum pressure of 902 mbar (hPa), making it the fourth most intense Atlantic Basin hurricane on record.

Aug 29: Hurricane Katrina made landfall as a Category 4 hurricane with winds of 140 mph at 6:10 a.m. CDT near Buras-Triumph, Louisiana. A few hours later, it made landfall for a third time near the Louisiana/Mississippi border with 125 mph (200 km/h) Category 3 winds.

The hurricane weakened thereafter, losing hurricane-strength more than 100 miles (160 km) inland, near Laurel, Mississippi. It was downgraded to a tropical depression near Clarksville, Tennessee and continued to race northward.

Aug 31: Katrina, which affected a very wide swath of land covering a large portion of eastern North America, was last seen in the eastern Great Lakes region. Before being absorbed by the frontal boundary, Katrina's last known position was over southeast Quebec and northern New Brunswick. On Aug 31, Katrina became a powerful extratropical low on province of Quebec that gave 50 to 170 mm (1.97 to 6.69 in) of rain in 12 hours; also numerous wind gust from 50 to 98 km/h (31 to 61 mph) were reported in southern and eastern Quebec. In the region of Saguenay and Cote-Nord rain caused breakdown and failure in roads. The Cote-Nord region was isolated from rest of Quebec for at least 1 week.

Its lowest minimum pressure at landfall was 27.108 inches (918 mbar) (hPa), making it the third strongest hurricane on record to make landfall on the United States. A 15 to 30 foot (5 to 9 m) storm surge came ashore on virtually the entire coastline from Louisiana, Mississippi and Alabama to Florida. The 30 foot (10 m) storm surge recorded at Biloxi, Mississippi is the highest ever observed in America.

On Aug 31, at 11 p.m. EDT (0300 UTC, Sept 1), U.S. government weather officials announced that the center of the remnant low of what was Katrina had been completely absorbed by a frontal boundary in southeastern Canada, with no discernible circulation. The Hydrometeorological Prediction Center's last public advisory on Katrina was at 11 p.m. EDT on Aug 31 and the Canadian Hurricane Centre's last public advisory on Katrina was at 9 a.m. EDT on Aug 31.

At least 25 reported tornadoes were associated with Hurricane Katrina, with 4 tornadoes in Alabama, 15 tornadoes in Georgia, 1 tornado in Virginia, and 5 tornadoes in Pennsylvania. Most of the tornadoes were rated F0 or F1, but three tornadoes were rated F2 in Georgia. Tornadoes were reported in Adams and Cumberland Counties in Pennsylvania, in Fauquier, Virginia, in Carroll County, GA, in Carrollton, GA, in White County, GA, in Helen, GA, in Fort Valley, GA, and in Mobile, Alabama. There were also many reported tornadoes in Harrison County, Mississippi that were reported on the local news stations. One death was reported from an F2 tornado near Roopville, GA in Carroll County. About 500,000 chickens were killed or set free after dozens of poultry houses were damaged. Several injuries were reported with other tornadoes across Georgia. There was major damage in Helen, GA by an F2 tornado, which destroyed homes and a hotel.

By Aug 26 the possibility of "unprecedented cataclysm" was already being considered. Some computer models were putting New Orleans right in the center of their track probabilities, and the chances of a direct hit were forecast at nearly 90%. The Governor of Louisiana, Kathleen Babineaux Blanco declared a state of emergency for state agencies. On Aug 27, after Katrina crossed southern Florida and strengthened to Category 3, President G.Bush declared a state of emergency in Louisiana, Alabama, and Mississippi two days before the hurricane made landfall. On Aug 28 the National Weather Service issued a bulletin predicting "devastating" damage rivaling the intensity of Hurricane Camille. At a news conference New Orleans Mayor Nagin ordered an unprecedented mandatory evacuation of the city with Gov. Blanco standing beside him.

The Waterford nuclear power plant was shut down on Sunday, Aug 28, before Katrina's arrival.

According to opinion of some peoples, "Not since the Dust Bowl of the 1930s or the end of the Civil War in the 1860s have so many Americans been on the move from a single event." (one of local publications).

After the storm, over half the States were involved in providing shelter for evacuees.

Roughly 150,000 people were not able to evacuate, partially because hundreds of available New Orleans school buses were not used in the evacuation.

2. Economic effects of Hurricane Katrina. Most experts anticipate that Katrina will be the costliest natural disaster in U.S. history. Some early predictions in damages exceeded $100 billion, not accounting for potential catastrophic damage inland due to flooding (which would increase the total even more), or damage to the economy caused by interruption of oil supply (much of the U.S. energy operations are in the Gulf Coast region), and exports of commodities such as grain. Other predictions placed the minimum insured damage at around $12.5 billion (the insured figure is normally doubled to account for uninsured damages in the final cost). There are also effects on ocean shipping, the casino industry and tourism.

Space Shuttle program and damage to the Michoud Assembly Facility. The hurricane has passed over the Michoud Assembly Facility and materially interrupted the production of external tanks for the Space Shuttle, leading to a further interruption of the shuttle flights. A Lockheed Martin Space Systems spokesman Evan McCollum in Denver has reported that "there is water leakage and potential water damage in the buildings, but there's no way to tell how much at this point".

The Michoud Assembly Facility will remain closed until at least Sept 26. Plans to ship three tanks -- including the one for NASA's next mission -- back to Michoud for retrofitting are on indefinite hold. The next Shuttle flight, STS-121, could be postponed to May or later during the second half of 2006. This facility is also used as a temporary staging area and headquarters for the U.S. Marine Corps effort in New Orleans, helping with the evacuation.

The John C. Stennis Space Center in Hancock County, Mississippi was also damaged by Katrina, with structural damage to the main facility causing some water leakage into the interior portions of the research facility and halting any major tests while repairs are being made. In addition, the space center was used as a temporary evacuation center for areas near the Mississippi gulf coast region and for residents of New Orleans.



3. Environmental issues. Katrina has caused a renewed interest in global warming and whether it is responsible for stronger hurricanes observed in recent years.

An environmental factor in the extent of damage caused by Hurricane Katrina has been the destruction of wetlands in the affected regions, which traditionally have a mitigating effect on hurricane damage acting as a sponge to slow floodwaters.

Untreated sewage, decomposing bodies and livestock as well as a complicated mixture of toxic chemicals and oils originating from both domestic, agricultural and industrial sources were mixing into the floodwaters creating a serious health risk across the whole of the flooded area. The immediate threats included disease contagions being spread from decomposing bodies, both by water and by animal vectors such as mosquitoes. Longer term threats revealed themselves as the floodwaters recede, including biochemical residue which could severely impact surface and ground water, soil, and urban environments. An immediate challenge existed in safely disposing of vast quantities of polluted water inside New Orleans.

4. Predictions of the devastation from a hurricane. In 2002, The New Orleans Times-Picayune newspaper ran a series on the risk. "It's only a matter of time before South Louisiana takes a direct hit from a major hurricane. Billions have been spent to protect us, but we grow more vulnerable every day." New Orleans Times-Picayune June 23 - 27 June 2002 (cited by 'Wall Street Journal Online, by Joe Hagan, 31 Aug 2005, p. A5). National Geographic ran a feature in October 2004. Scientific American covered the topic thoroughly in an October 2001 piece titled "Drowning New Orleans". W. Williams did a serious short feature on it called "New Orleans: The Natural History", in which an expert said a direct hit by a hurricane could damage the city for six months. CSO magazine ran an interview with the National Weather Service's G. Woodall in which he listed six steps that citizens and company executives can take to be prepared for hurricanes such as this.



Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8   9   ...   29




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет