Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики



Дата28.06.2016
өлшемі247.05 Kb.
#163127
Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции.
Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики.

Решение: Рассмотрим 1-ю функцию

y

y

y = arcsin(1/x)



π/2

-π/2


Д(f): | 1/x | ≤ 1 ,

| x | ≥ 1 ,

( - ∞ ; -1 ] U [ 1; + ∞ )

-1

0



1

x

y



x
Функция нечетная

( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;π/2] )

y

Заметим, что функция y=arccosec(x) определяется из условий cosec(y)=x и y є [-π/2; π/2], но из условия cosec(y)=x следует sin(y)=1/x, откуда



π

y=arcsin(1/x). Итак, arccos(1/x)=arcsec(x)


Д(f): ( - ∞ ; -1 ] U [ 1; + ∞ )

π/2

0

1

-1


Пример №2. Исследовать функцию y=arccos(x2).

π/2

Решение:


Д(f): [-1;1]

Четная


f(x) убывает на пр. [0;1]

0

-1



f(x) возрастает на пр. [-1;0]

1

x



Пример №3. Исследовать функцию y=arccos2(x).

Решение: Пусть z = arccos(x), тогда y = z2

f(z) убывает на пр. [-1;1] от π до 0.

f(y) убывает на пр. [-1;1] от π2 до 0.


x
0

1

-1


Пример №4. Исследовать функцию y=arctg(1/(x2-1))

Решение:

Д(f): ( - ∞ ; -1 ) U ( -1; 1 ) U ( 1; +∞ )

Т.к. функция четная, то достаточно исследовать функцию на двух промежутках:

y

[ 0 ; 1 ) и ( 1 ; +∞ )


π/2

X0< x <1< x <+∞1

-1

u=1/(x2-1)-1↘+ ∞



- ∞↘00

x

y=arctg(u)- π/4↘π/2



- π/2↘0-π/2

-π/4


  • Тригонометрические операции над аркфункциями


Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.

В силу определения аркфункций:


sin(arcsin(x)) = x , cos(arccos(x)) = x

(справедливо только для x є [-1;1] )

tg(arctg(x)) = x , ctg(arcctg(x)) = x

(справедливо при любых x )

Графическое различие между функциями, заданными формулами:
y=x и y=sin(arcsin(x))

x

y



0
x

y

0



1

-1

Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями.


Аргумент

функцияarcsin(x)arccos(x)arctg(x)arcctg(x)sinsin(arcsin(x))=x cos x tg x1 / xctg 1 / xx

Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже:


  1. Т.к. cos2x + sin2x = 1 и φ = arcsin(x)




Перед радикалом следует взять знак “+”, т.к. дуга принадлежит правой полуокружности (замкнутой) , на которой косинус неотрицательный.

Значит, имеем






  1. Из тождества следует:




  1. Имеем





Ниже приведены образцы выполнения различных преобразований посредством выведения формул.


Пример №1. Преобразовать выражение

Решение: Применяем формулу , имеем:


Пример №2. Подобным же образом устанавливается справедливость тождеств:




Пример №3. Пользуясь ...


Пример №4. Аналогично можно доказать следующие тождества:












Пример №5. Положив в формулах

, и

, получим:

,
Пример №6. Преобразуем

Положив в формуле ,

Получим:

Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная.



  1. Соотношения между аркфункциями


Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг.

Теорема. При всех допустимых х имеют место тождества:

arcsin(x)

arccos(x)


x

y

1



-1

Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов).


Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности.

Пусть, например, рассматривается дуга α, заключенная в интервале (-π/2; π/2).

Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sinα и заключена, так же как и α, в интервале (-π/2; π/2), следовательно

Аналогично можно дугу α представить в виде арктангенса:



А если бы дуга α была заключена в интервале ( 0 ; π ), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса:



Так, например:





Аналогично:




Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней).

  1. Выражение через арктангенс.

Пусть , тогда

Дуга , по определению арктангенса, имеет тангенс, равный и расположена в интервале (-π/2; π/2).

Дуга имеет тот же тангенс и расположена в том же интервале (-π/2; π/2).

Следовательно,



(1)

(в интервале ( -1 : 1 )




  1. Выражение через арксинус.

Т.к. , то (2)

в интервале




  1. Выражение арккосинуса через арккотангенс. Из равенства следует тождество

(3)
Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например,


Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции.

Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -π/2 до 0, либо промежутку от π/2 до π и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку.

Так, например, дуга не может быть значением арксинуса. В этом случае


Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях.


  1. Выражение арксинуса через арккосинус.

Пусть , если , то . Дуга имеет косинус, равный , а поэтому

При это равенство выполняться не может. В самом деле, в этом случае



, а для функции имеем:

так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.

Расположение рассматриваемых дуг пояснено на рисунке:

Х>0 X<0


При отрицательных значениях Х имеем Х<0, а при положительных X>0, и

Таким образом, имеем окончательно:


если , (4)

, если

График функции

1

-1
Область определения есть сегмент [-1;1]; согласно равенству (4), закон соответствия можно выразить следующим образом:


, если



, если



  1. Аналогично установим, что при имеем:

, если же , то

Таким образом:



, если (5)

, если





  1. Выражение арктангенса через арккосинус. Из соотношения

при имеем:

Если же х<0, то



Итак,


, если (6)

, если



  1. Выражение арккосинуса через арктангенс. Если , то

При имеем:

Итак,


, если (7)

, если


  1. Выражение арктангенса через арккотангенс.

, если х>0 (8)

,если x<0
При x>0 равенство (8) легко установить; если же x<0, то

.

  1. Выражение арксинуса через арккотангенс.

, если (9)

, если


  1. Выражение арккотангенса через арксинус.

, если 0(10)

, если х<0


  1. Выражение арккотангенса через арктангенс.

, если x>0 (11)

, если x<0


Примеры:
Пример №1. Исследовать функцию

Решение. Эта функция определена для всех значений х, за исключением значения х=0 (при х=0) второе слагаемое теряет смысл). Воспользовавшись формулой (8) получим:

Y
y= 0 , если x>0

-π , если x<0

X

На чертеже изображен график



данной функции

Пример №2. Исследовать функцию

Решение: Первое слагаемое определено для значений , второе – для тех же значений аргумента. Преобразим первое слагаемое по формуле (4).

Т.к. , то получаем



,

откуда:


на сегменте [0;1]
Пример №3. Исследовать функцию

Решение: Выражения, стоящие под знаками аркфункций не превосходят по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4).




Приняв во внимание равенство
, если

, если

получим:


y = 0 , если

, если

Выполнение обратных тригонометрических операций над тригонометрическими функциями.

При преобразовании выражений вида

следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение данной аркфункции. Рассмотрим, например, первое из данных выражений:



Согласно определению арксинуса, y – есть дуга правой полуокружности (замкнутая), синус которой равен sin x;



и

Областью определения функции служит интервал , так как при всех действительных значениях х значение промежуточного аргумента содержится на сегменте . При произвольном действительном х значение y (в общем случае) отлично от значения х.

Так, например, при х=π/6 имеем:

но при х=5π/6



В силу периодичности синуса функция arcsin x также является периодической с периодом 2π, поэтому достаточно исследовать ее на сегменте [-π/2; 3π/2] величиной 2π.

Если значение х принадлежит сегменту [-π/2; π/2] то y=x, на этом сегменте график функции совпадает с биссектрисой координатного угла.

Если значение х принадлежит сегменту [π/2; 3π/2], то в этом случае дуга π-х принадлежит сегменту [-π/2; π/2]; и, так как



, то имеем y=π-х;

в этом промежутке график функции совпадает с прямой линией y=π-х. Если значение х принадлежит сегменту [3π/2; 5π/2], то, пользуясь периодичностью или путем непосредственной проверки, получим:

y=х-2π

Если значение х принадлежит сегменту [-3π/2; -π/2], то



y=-π-х

Если значение х принадлежит сегменту [-5π/2; -3π/2], то

y=х+2π

Вообще, если , то



y=х-2πk

и если , то

y=(π-х)+2πk
График функции представлен на рисунке. Это ломаная линия с бесконечным множеством прямолинейных звеньев.

π



X

Y

Рассмотрим функцию



Согласно определению арккосинуса, имеем:

cos y = cos x, где

Областью определения данной функции является множество всех действительных чисел; функция периодическая, с периодом, равным 2π. Если значение Х принадлежит сегменту [0; π], то y = x. Если х принадлежит сегменту [π; 2π], то дуга 2π-х принадлежит сегменту [0; π] и , поэтому:

Следовательно, на сегменте [π; 2π] имеем y = 2π - x

Если х принадлежит сегменту [2π; 3π], то y = x - 2π

Если х принадлежит сегменту [3π; 4π], то y = 4π – x


Вообще, если , то y = x - 2πk

Если же , то y = -x + πk

Графиком функции является ломаная линия

π



0

Х

Y



  1. Формулы сложения


Формулы сложения дают выражения для суммы или разности двух (или нескольких) аркфункций через какую-либо данную аркфункцию. Пусть дана сумма аркфункций; над этой суммой можно выполнить любую тригонометрическую операцию. (....) В соответствии с этим дуга-функция может быть выражена посредством любой данной аркфункции. Однако в различных случаях (при одних и тех же аркфункциях) могут получаться различные формулы, в зависимости от промежутка, в котором берется значение рассматриваемой аркфункции.

Сказанное пояснено ниже на числовых примерах.

Примеры.

Пример №1. Преобразовать в арксинус сумму



Решение: эта сумма является суммой двух дуг α и β, где



;

В данном случае (т.к. , а следовательно, ), а также , поэтому .

Вычислив синус дуги γ, получим:

Т.к. сумма γ заключена на сегменте [-π/2; π/2], то




Пример №2. Представить дугу γ, рассмотренную в предыдущем примере, в виде арктангенса. Имеем:


Откуда


Пример №3. Представить посредством арктангенса сумму

Решение: в данном случае (в отличие от предыдущего) дуга γ оканчивается во второй четверти, т.к. , а . Вычисляем

В рассматриваемом примере , так как дуги γ и заключены в различных интервалах,

, а

В данном случае


Пример №4. Представить дугу γ, рассмотренную в предыдущем примере, в виде арккосинуса.

Решение: имеем




Обе дуги γ и расположены в верхней полуокружности и имеют одинаковый косинус, следовательно, эти дуги равны:

Так как суммы и разности любых аркфункций можно выражать при помощи произвольных аркфункций, то можно получать самые разнообразные формулы сложения. Однако все эти формулы выводятся при помощи однотипных рассуждений. Ниже в качестве примеров даются некоторые из формул сложения, по этим образцам можно получить аналогичные формулы в различных прочих случаях.

Формулы сложения аркфункций от положительных аргументов.

Пусть α и β – две дуги, заключенные в промежутке от 0 до π/2 (первая четверть):



, и

Сумма α + β заключена в верхней полуокружности , следовательно, ее можно представить в виде аркфункции, значение которой выбирается в том же интервале, т.е. в виде арккосинуса, а также в виде арккотангенса:



;

Разность α – β заключена в правой полуокружности:

Следовательно, она может быть представлена в виде арксинуса, а также в виде арктангенса:

;

Так как значение всякой аркфункции от положительного аргумента заключено в интервале (0; π/2) то сумму двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арккотангенса, а разность двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арктангенса.

Ниже приведены образцы соответствующих преобразований.


  1. Преобразуем в арккосинус , где и

Имеем:

Откуда




  1. Аналогично

, где 0 < x < 1, 0 < y < 1

, где 0 < x < 1, 0 < y < 1






Формулы сложения аркфункций от произвольных аргументов.


  1. Выразить сумму через арксинус

По определению арксинуса

и ,

откуда


Для дуги γ возможны следующие три случая:

Случай 1:

Если числа x и y разных знаков или хотя бы одно из них равно нулю, то имеет место случай 1.

В самом деле, при и , имеем:

, и ,

откуда


При x > 0, y > 0 для дуги γ имеет место одна из следующих двух систем неравенств:

а) б)

Необходимым и достаточным признаком, позволяющим отличить один от другого случаи а) и б), является выполнение неравенства:



в случае а) и в случае б)

В самом деле, взаимно исключающие друг друга соотношения а) и б) влекут за собой взаимно исключающие следствия и (соответственно), а потому эти следствия служат необходимыми и достаточными признаками наличия данных соотношений.

Вычислив , получим:

При x > 0, y > 0 наличие случая 1 означает выполнения неравенства а) т.е. или



Откуда


и, следовательно,

Наличие случая 1 при x < 0, y < 0 означает выполнение неравенств



;

но тогда для положительных аргументов x и y имеет место случай 1, а потому



или
Случай 2.

В этом случае x > 0, y > 0, т.е. выполняется неравенство б); из условия получим


Случай 3.

Этот случай имеет место при x < 0, y < 0, и

Изменив знаки на противоположные придем к предыдущему случаю:

откуда

Дуги γ и имеют одинаковый синус, но (по определению арксинуса) , следовательно в случае 1 ;

в случае 2 и в случае 3 .

Итак, имеем окончательно:

, или



; x > 0, y > 0, и (1)

; x < 0, y < 0, и


Пример:



;
2. Заменив в (1) x на x получим:
, или

; x > 0, y > 0, и (2)

; x < 0, y < 0, и

3. Выразить сумму через арккосинус

и

имеем


Возможны следующие два случая.

Случай 1: если , то

Приняв во внимание, что обе дуги и расположены в промежутке [0;π] и что в этом промежутке косинус убывает, получим



и следовательно, , откуда


Случай 2: . Если , то

,

откуда при помощи рассуждений, аналогичных предыдущим, получим . Из сопоставления результатов следует, что случай 1 имеет место, если , а случай 2, если



.

Из равенства следует, что дуги



и имеют одинаковый косинус.

В случае 1 , в случае 2 , следовательно,


,

, (3)
4. Аналогично

,

, (4)
пример:

5.


; xy < 1

; x > 1, xy > 1 (5)

; x < 0, xy > 1

При xy=1 не имеет смысла


6.

; xy > -1

; x > 0, xy < -1 (6)

; x < 0, xy < -1
7.

;

; (7)

;
8.

; (8)

;
9.

;

; x > 1 (9)

; x < -1
10. (10)

(11)



, если (12)

, если


Достарыңызбен бөлісу:




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет