1/ 1. Водород. Изотопы водорода. Свойства водорода. Получение и применение
водорода. Гидриды.
Водород — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1H — протон. Свойства ядра 1H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.
Три изотопа водорода имеют собственные названия: 1H — протий (Н), 2H — дейтерий (D) и 3H — тритий (радиоактивен) (T).
Простое вещество водород — H2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, платине.
ПОлучение
В промышленности
1.Электролиз водных растворов солей:
2NaCl + 2H2O > H2^ + 2NaOH + Cl2
2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:
H2O + C ? H2^ + CO^
3.Из природного газа.
Конверсия с водяным паром:
CH4 + H2O ? CO^ + 3H2^ (1000 °C)
Каталитическое окисление кислородом:
2CH4 + O2 ? 2CO^ + 4H2^
4. Крекинг и риформинг углеводородов в процессе переработки нефти
В лаборатории
1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:
Zn + 2HCl > ZnCl2 + H2^
2.Взаимодействие кальция с водой:
Ca + 2H2O > Ca(OH)2 + H2^
3.Гидролиз гидридов:
NaH + H2O > NaOH + H2^
4.Действие щелочей на цинк или алюминий:
2Al + 2NaOH + 6H2O > 2Na[Al(OH)4] + 3H2^
Zn + 2KOH + 2H2O > K2[Zn(OH)4] + H2^
5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:
2H3O+ + 2e- > H2^ + 2H2O
Молекулы водорода Н2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:
Н2 = 2Н ? 432 кДж
Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:
Ca + Н2 = СаН2
и с единственным неметаллом — фтором, образуя фтороводород:
F2 + H2 = 2HF
С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:
О2 + 2Н2 = 2Н2О
Он может «отнимать» кислород от некоторых оксидов, например:
CuO + Н2 = Cu + Н2O
Записанное уравнение отражает восстановительные свойства водорода.
N2 + 3H2 > 2NH3
С галогенами образует галогеноводороды:
F2 + H2 > 2HF, реакция протекает со взрывом в темноте и при любой температуре,
Cl2 + H2 > 2HCl, реакция протекает со взрывом, только на свету.
С сажей взаимодействует при сильном нагревании:
C + 2H2 > CH4
При взаимодействии с активными металлами водород образует гидриды:
2Na + H2 > 2NaH
Ca + H2 > CaH2
Mg + H2 > MgH2
Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:
CaH2 + 2H2O > Ca(OH)2 + 2H2^
Оксиды восстанавливаются до металлов:
CuO + H2 > Cu + H2O
Fe2O3 + 3H2 > 2Fe + 3H2O
WO3 + 3H2 > W + 3H2O
Использование:
При производстве аммиака, метанола, мыла и пластмасс
При производстве маргарина из жидких растительных масел
Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)
Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.
Водород используют в качестве ракетного топлива.
2/Галогены. Строение атомов, молекул и простых веществ. Проявляемые
степени окисления. Физические и химические свойства галогенов и зако-
номерности в их изменении. Энергетические диаграммы молекул галоге-
нов.
Галогены - рождающие соли.
На валентных орбиталях - 7 электронов ns2np5. Являются сильными окислителями, присоединяя ион - образуют отрицательно заряженные галогениды.
Хлор бром йод астат имеют степени гокисления +1 +3 +5 +7, фтор - с самой высокой электроотричательностью, не имеет + СО. F->at радиусы атома возрастают, уменьшается
: энергия ионизации, сродство к электрону, электроотрицательность - неметалл свойства - ослабевают.
Образуют двухатомные молекула Г2. в ряду F2-Cl2-Br2-I2 прочность связи убывает из за снижения плотности перекрывания валентных орбиталей с ростом гланого кв. числа.
В этом же ряду увеличивается ван-дер-ваальсово взаимодействие (рост темп плавления) и снижается окислительная активность
Физические
Фтор - бледно-зеленый газ, температура плавления -219оС, кипения -188оС, в воде растворен быть не может, так как интенсивно с ней взаимодействует.
Хлор - желто-зеленый газ, температура плавления -101оС, кипения -34оС, легко сжижается при 20оС и давлении 6 атм (0,6 Мпа), растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.
Бром - красно-бурая жидкость, температура плавления -70оС, кипения +59оС, растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.
Иод - черно-фиолетовые с металлическим блеском кристаллы, плавятся при +113,6оС, температура кипения жидкого иода +185,5оС. Кристаллический иод легко возгоняется (сублимируется) - переходит из твердого в газообразное состояние. Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле.
Т. кипения/плавления с ряду F2-Cl2-Br2-I2 - -219/-188, -101/-34, -7/60, 113/185
Хим. свойства
- образуют кислородные соединения - оксиды и оксокислоты
- растворимы в спиртах бензоле простых эфирах
- в водном растворе все кроме фтора диспропорционируют, равновесие смещается влево
- фтор окисляет воду
- образую галлогениды с металлами
- убывание окислительной активности: Н2 + Г2 =2НГ (фтор в темноте, хлор на свету, бром ещё и при нагреве, а йод - ещё и обратима)
- вытесняют из солец более слабые Г - хлор вытесняет бромиды и йодиды (Cl2 + 2KBr=Br2+2KCl)
Различная окисл. способность влияет на живые организмы - хлор и бром - отравляющие. а йод - антисептик
Применение:
Хлор - поливинилхлорид, хлорбензол и т.д. для отбеливания тканей, очищения воды, дезинфекции, а произвоные (KClO3) являются компонентами ракетного топлива.
Бром - как краситель и лекарственный препарат.
Иойд - получение металлов высокой степени чистоты, как катализатор в орг синтезе, как антисептик и лекарство
Получение:
В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2).
В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. Основным способом получения простых веществ является окисление галогенидов Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I-. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха
В природе встречаются следующие стабильные изотопы галогенов: фтора - 19F, хлора - 35Cl и 37Cl, брома - 79Br и 81Br, иода - 127I.
Галогены в природе находятся только в виде соединений, причем в состав этих соединений галогены входят (за редчайшим исключением) только в степени окисления -1. Практическое значение имеют минералы фтора: CaF2 - плавиковый шпат, Na2AlF6 - криолит, Ca5F(PO4)3 - фторапатит и минералы хлора: NaCl - каменная соль (это же вещество - главный компонент, обуславливающий соленость морской воды), KСl - сильвин, MgCl2*KCl*6H2O - карналлит, KCl*NaCl - сильвинит. Бром в виде солей содержится в морской воде, в воде некоторых озер и в подземных рассолах. Соединения иода содержатся в морской воде, накапливаются в некоторых водрослях. Существуют незначительные залежи солей иода - KIO3 и KIO4 - В Чили и Боливии.
3/Растворимость галогенов в воде и органических растворителях. Взаимо-
действие галогенов с водой. Образование клатратов.
Растворимость. Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8H2O) могут быть выделены из раствора при охлаждении.
Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Раствор иода в CCl4 или других бескислородных растворителях имеет фиолетовую окраску. Можно полагать, что в таком растворителе молекулы иода ведут себя подобно их состоянию в газовой фазе, которая имеет такую же окраску. В кислородсодержащих растворителях происходит оттягивание электронной пары кислорода на валентные орбитали иода.
Молекулы галогенов неполярны, галогены хорошо растворяются в спиртах, бензоле, простых эфирах.
Фтор в воде растворен быть не может, так как интенсивно с ней взаимодействует.
Хлор - растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.
Бром - растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.
Иод - . Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле.
Взаимодействие галогенов с водой - сложный процесс, включающий растворение, образование сольватов и диспропорционирование.
Фтор в отличие от других галогенов воду окисляет:
2H2O + 2F2 = 4HF + O2.
Однако при насыщении льда фтором при -400С образуется соединение HFO
Можно отметить два типа взаимодействия молекул воды с молекулами галогенов. К первому относится процесс образования клатратов, например, 8Cl2. 46H2O при замораживании растворов. Молекулы галогена в клатратах занимают свободные полости в каркасе из молекул H2O, связанных между собой водородными связями.
Ко второму типу можно отнести гетеролитическое расщепление и окислительно-восстановительное диспропорционирование
состав продуктов взаимодействия в системе Cl2+H2O: растворенный в воде хлор (он преобладает), HCl, HClO, HClO3. При насыщении хлором холодной воды (0-20оС) часть молекул Cl2 диспропорционирует:
Cl2 + H2O = HCl + HClO,
при этом кислотность раствора постепенно увеличивается.
Бром и иод взаимодействуют с водой аналогично хлору
4/Галогеноводороды. Строение молекул. Физические и химические свойства.
Особенности фтороводорода. Получение и применение соляной кислоты.
Молекулы HХ полярны. Полярность количественно характеризуется величиной дипольного момента. Дипольные моменты убывают в ряду HF-HI. С точки зрения МО ЛКАО полярность определяется различием энергий взаимодействующих 1s-атомной орбитали водорода и ns-, np-орбиталей атома галогена. Как отмечалось, в ряду F-Cl-Br-I эта разница, а также степень локализации электронов на атомах галогена и полярность молекул НХ уменьшаются.
В стандартных условиях галогеноводороды - газы. С ростом массы и размеров молекул усиливается межмолекулярное взаимодействие и, как следствие, повышаются температуры плавления (Тпл) и кипения (Ткип). Однако для HF величины Тпл и Ткип, полученные экстраполяцией в ряду однотипных соединений HF-HCl-HBr-HI, оказываются существенно ниже, чем экспериментальные (табл.4). Аномально высокие температуры плавления и кипения объясняются усилением межмолекулярного взаимодействия за счет образования водородных связей между молекулами HF
Твердый HF состоит из зигзагообразных полимерных цепей. В жидком и газообразном HF вплоть до 60оС присутствуют полимеры от (HF)2 до (HF)6. Для HCl, HBr, HI образование водородных связей не характерно из-за меньшей электроотрицательности атома галогена.
Растворимость в воде. Благодаря высокой полярности газообразные НХ хорошо растворимы в воде * ) , например, в 1 объеме воды при 0оС растворяется 507 объемов HCl или 612 объемов HBr. При охлаждении из водных растворов выделены кристаллические гидраты HF. H2O, HCl. 2H2O и т.д., которые построены из соответствующих галогенидов оксония. В водных растворах НХ устанавливается протолитическое равновесие
HX + HOH = + H3O+ (X = F, Cl, Br, I), (1),
то есть эти растворы являются кислотами.
Водные растворы HCl, HBr и HI ведут себя как сильные кислоты. В разбавленных водных растворах HF является слабой кислотой (рКа = 3.2), что связано с высокой энергией связи H-F по сравнению с энергией связи H-О в молекуле воды. Однако при повышении концентрации HF выше 1 М сила кислоты увеличивается.
Особенностью фтороводорода и плавиковой кислоты является способность разъедать стекло
Восстановительные свойства галогеноводородов. С увеличением размера и уменьшением энергии ионизации атома галогена восстановительная способность в ряду HF-HCl-HBr-HI увеличивается (табл.5). Например, плавиковая HF и соляная HCl кислоты с концентрированной серной кислотой не взаимодействуют, а HBr и HI ею окисляются:
2HBr + H2SO4(конц) = Br2 + SO2 + 2H2O
8HI + H2SO4(конц) = 4I2 + H2S + 4H2O.
Сжигание хлора с водородом является основным промышленным способом получения HCl. Бром и иод реагируют с водородом более спокойно, однако выход невелик, поскольку равновесие Н2 + Х2 = 2НХ (Х = Br, I) смещено влево.
Газообразные НХ выделяются при действии нелетучих сильных кислот на твердые ионные галогениды металлов : (на практике пользуются 70-85%-ным р-ром серной к-ты, т.к. реакция идет на поверхности кристаллов соли. Если брать конц. к-ту, осаждается NaHSO4. При использовании разб серной к-ты значительная часть HCl остается в р-ре. Выделяющийся HCL сушат над конц. серной к-той. Оксид фосфора для этого непригоден так как взаимодействует с HCL: P4O10 + 12HCL = 4POCL3 + 6H2O
CaF2 + H2SO4(конц) = CaSO4 + 2HF
NaCl + H2SO4(конц) = NaHSO4 + HCl
Большинство галогенидов неметаллов относятся к соединениям с ковалентной связью и гидролизуются с выделением соответствующего галогеноводорода, например,
SiCl4 + 4H2O = SiO2. 2H2O + 4HCl
Галогеноводороды образуются также при галогенировании органических соединений, например:
RH +Cl2 = RCl + HCl
Соляную кислоту получают растворением газообразного хлороводорода в воде. Хлороводород получают сжиганием водорода в хлоре. В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии крепкой серной кислоты на поваренную соль:
NaCl + H2SO4(конц.) (150 °C) > NaHSO4 + HCl^
При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:
NaCl + NaHSO4 (>550 °C) > Na2SO4 + HCl^
Хлороводород прекрасно растворим в воде. Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.
Промышленность
Применяют в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при паянии и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с ПАВ используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции.
В пищевой промышленности зарегистрирована в качестве регулятора кислотности, пищевой добавки E507. Применяется для изготовления зельтерской (содовой) воды.
Медицина
Составная часть желудочного сока; разведенную соляную кислоту ранее назначали внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.
5/Оксокислоты хлора. Кислотные и окислительно-восстановительные свой-
ства. Свойства солей оксокислот хлора.
Гипогалогенитные кислотыHXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути:
2X2 + 2HgO + H2O = HgO. HgХ2+2HOX.
Гипогалогенитные кислоты являются слабыми.
Растворы гипогалогенитов имеют сильно щелочную реакцию, а пропускание через них СО2 приводит к образованию кислоты, например,
NaClO + H2O + CO2 = NaHCO3 + HClO.
Высокую окислительную способность гипохлоритов иллюстрируют следующие реакции:
NaСlO +2NaI + H2O = NaCl + I2 + 2NaOH
2NaClO + MnCl2 + 4NaOH = Na2MnO4 + 4NaCl + 2H2O.
Из оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4 :
Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2.
HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде:
2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2
2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O.
Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7 в 9.3). Хлорноватая HClO3 кислота получены в растворах с концентрацией ниже 30%
Растворы HClO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,
Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4 .
При концентрации растворов выше 30% кислоты HBrO3 и HClO3 разлагаются со взрывом.
Водные растворы HXO3 являются сильными кислотами
соли более устойчивы к нагреванию, чем соответствующие кислоты. В частности, некоторые из иодатов встречаются в природе в виде минералов, например, лаутарит NaIO3. При нагревании твердого КСIO3 до 500оС возможно диспропорционирование 4KClO3 3KClO4 +KCl,
Хлорная кислота (Тпл.= -102оС, Ткип.= 90оС) получена в индивидуальном состоянии нагреванием твердой соли КClO4 с концентрированной H2SO4 с последующей отгонкой при пониженном давлении:
КClO4 ,тв.+ H2SO4,конц HClO4 + KHSO4
HClO4 легко взрывается при контакте с органическими веществами
Хлорная кислота - одна из сильных кислот
Бесцветная концентрированная HClO4 даже при комнатной температуре синтеза темнеет из-за образования оксидов хлора с более низкими степенями окисления.
Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО, электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.
6/6. Оксокислоты галогенов. Закономерности изменения их кислотных и окис-
лительных свойств в ряду Cl–Br–I. Устойчивость оксокислот галогенов.
Гипогалогенитные кислотыHXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути:
2X2 + 2HgO + H2O = HgO. HgХ2+2HOX.
Следует отметить особенность соединения HOF. Оно образуется при пропускании фтора над льдом при -400С и конденсацией образующегося газа при температуре ниже 0оС.
F2,газ + H2Oлед HOF + HF
HOF, в частности, не образует солей, а при его взаимодействии с водой появляется пероксид водорода:
HOF + H2O = H2O2 + HF
Гипогалогенитные кислоты являются слабыми. При переходе от хлора к иоду по мере увеличения радиуса и уменьшения электроотрицательности атом галогена слабее смещает электронную плотность от атома кислорода и, тем самым, слабее поляризует связь Н-О. В результате кислотные свойства в ряду HClO - HBrO - HIO ослабляются
Из оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4 :
Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2.
HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде:
2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2
2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O.
Бромит бария удалось синтезировать по реакции:
Ba(BrO)2 + 2Br2 + 4KOH Ba(BrO2)2 +4KBr + 2Н2О.
Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7 в 9.3). Хлорноватая HClO3 и бромноватая HBrO3 кислоты получены в растворах с концентрацией ниже 30%, а твердая йодноватая HIO3 выделена как индивидуальное вещество.
Растворы HClO3 и HBrO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,
Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4 .
Водные растворы HXO3 являются сильными кислотами. В ряду HClO3-HBrO3-HIO3 наблюдается некоторое уменьшение силы кислот (табл.10). Это можно объяснить тем, что с ростом размера атома галогена прочность кратной связи О уменьшается, что приводит к уменьшению полярности связи H-O и уменьшению легкости отрыва от нее водорода молекулами воды.
метаиодная кислота HIO4 и некоторые ее соли известны, иод(VII) из-за роста радиуса в ряду Сl-Br-I и повышения его координационного числа образует, главным образом, гидроксопроизводные состава (HO)5IO H5IO6, в которых атом иода октаэдрически окружен атомом кислорода и пятью гидроксильными группами
Бромная кислота HBrO4 известна лишь в растворах (не выше 6М), получаемых подкислением перброматов NaBrO4, которые, в свою очередь, удалось синтезировать окислением броматов фтором в разбавленных щелочных растворах (броматы можно окислить до перброматов с помощью XeF2 или электролитически) :
NaBrO3 + F2 + 2NaOH = NaBrO4 + 2NaF +H2O .
Хлорная кислота - одна из сильных кислот. По силе к ней приближается бромная кислота.
Иодная кислота существует в нескольких формах, главными из которых являются ортоиодная H5IO6 и метаиодная HIO4 кислоты. Ортоиодная кислота образуется в виде бесцветных кристаллов при осторожном упаривании раствора, образующегося при обменной реакции
Ba3(H2IO6)2 + 3H2SO4 = 3BaSO4 + 2H5IO6.
Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО, электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.
7/7. Элементы 16 группы. Строение атомов, молекул, простых веществ. Прояв-
5
ляемые степени окисления. Химические свойства простых веществ, обра-
зованных элементами 16 группы.
O S Se Te
Атомы имеют по 6 электронов на s p орбиталях внешнего уровня.
В ряду элементов О-S-Se-Te-Po уменьшается энергия ионизации и электроотрицательность, увелимчивается размер атомов и ионов, усиливаются
восстановительные свойства, ослабляются неметаллические признаки. Кислород по ЭОти уступает только фтору. Другие элементы (-1), (-2) с металлами,
с неметаллами (+4), (+6)
В живых организмах - O S Se (-2)
Хим. св-ва
Сера
S + 3F2 = SF6
S + Cl2 = SCl2
S + 6HNO3(конц.) = H2SO4 + 6NO2 ^ + 2H2O
S + 2H2SO4(конц.) = 3SO2 ^ + 2H2O
S + O2 = SO2
2Na + S = Na2S
3S + 6KOH = K2SO3 + 2K2S + 3H2O
Достарыңызбен бөлісу: |