Исследование теории и задач по теме «Тепловые явления»


Молекулярно-кинетическая теория строения и тепловых свойств вещества



бет16/34
Дата26.12.2023
өлшемі1.41 Mb.
#488128
түріИсследование
1   ...   12   13   14   15   16   17   18   19   ...   34
Диссертация

Молекулярно-кинетическая теория строения и тепловых свойств вещества.
Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем:
термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй — молекулярной физики.
Одновременно с созданием термодинамических методов исследования развивались и корпускулярные представления тепловых свойств макросистем, в соответствии с которыми ставилась задача объяснения всех процессов, происходящих с макросистемами, на основе предположения о том, что вещество состоит из атомов или молекул, движение которых подчиняется законам Ньютона.
К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул — молекулярно-кинетическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории.
Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Поведение громадного числа молекул анализируется с помощью статистического метода, который основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц систем, особенностями их движения и усредненными значениями кинетических и динамических характеристик этих частиц (скорости, энергии, давления и т. д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.
В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств микросистемы.
В основе молекулярно-кинетических представлений о строении и свойствах макросистем лежат три положения:
любое тело — твердое, жидкое или газообразное — состоит из большого числа весьма малых частиц — молекул (атомы можно рассматривать как одноатомные молекулы);
молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении;
интенсивность движения молекул зависит от температуры вещества.
Тепловые процессы связаны со строением вещества и его внутренней структурой. Например, нагревание кусочка парафина на несколько десятков градусов превращает его в жидкость, а такое же нагревание металлического стержня заметно не влияет на него. Такое различное действие нагревания связано с различием во внутреннем строении этих веществ. Поэтому исследование тепловых явлений можно использовать для выяснения общей картины строения вещества. И, наоборот, определенные представления о строении вещества помогают понять физическую сущность тепловых явлений, дать им глубокое наглядное истолкование.
Свойства и поведение макросистем, начиная от разреженных газов верхних слоев атмосферы и кончая твердыми телами на Земле, а также сверхтвердыми ядрами планет и звезд, определяются движением и взаимодействием друг с другом частиц, из которых состоят все тела: молекул, атомов, элементарных частиц.
Непосредственным доказательством существования хаотического движения молекул служит броуновское движение, которое заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного, беспорядочного движения, не зависящего от внешних причин, и оказывается проявлением внутреннего движения, совершаемого под влиянием беспорядочных ударов молекул.
Количественным воплощением молекулярно-кинетических представлений служат опытные газовые законы (Бойля— Мариотта, Гей-Люссака, Авогадро, Дальтона), уравнение Клапейрона—Менделеева (уравнение состояния), основное уравнение кинетической теории идеальных газов, закон Максвелла для распределения молекул и др.
Первое положение молекулярно-кинетических представлений — любое тело состоит из большого числа весьма малых частиц-молекул — доказано многочисленными опытами, одновременно подтвердившими реальное существование молекул и атомов.
Работа связана с перемещением, теплообмен связан с теплотой.
Известно, что в процессе превращения энергии выполняется закон сохранения энергии. Поскольку тепловое движение тоже механическое (только не направленное, а хаотическое), то при всех превращениях должен выполняться закон сохранения энергии не только внешних, но и внутренних движений. В этом заключается качественная формулировка закона сохранения энергии для термодинамической системы – первое начало термодинамики. Количественная его формулировка: количество теплоты  , сообщенное телу, идет на увеличение его внутренней энергии  и на совершение теплом работы т.е.
.
Q – теплота полученная макросистемой от других систем.
– изменение внутренней энергии макросистемы.
А – работа, которую совершила макросистема над другими системами.
Если отдает тепло – «- Q», если получает - « + Q».
Если совершает работу – «-А», если над системой – «+А».
Из первого начала термодинамики следует важный вывод: невозможен вечный двигатель первого рода, т.е. такой двигатель, который совершал бы работу «из ничего», без внешнего источника энергии. При наличии внешнего источника часть энергии неизбежно переходит в энергию теплового, хаотического движения молекул, что и является причиной невозможности полного превращения энергии внешнего источника в полезную работу.
Многочисленные опыты показывают, что все тепловые процессы необратимы в отличие от механического движения.
Если реализуется какой-либо термодинамический процесс, то обратный процесс, при котором проходятся те же тепловые состояния, но только в обратном направлении, практически невозможен. Другими словами, термодинамические процессы необратимы.


Достарыңызбен бөлісу:
1   ...   12   13   14   15   16   17   18   19   ...   34




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет