Лекции рассматриваются следующие вопросы: Кинематика точки. Введение в кинематику


Естественный способ задания движения точки



бет3/6
Дата15.12.2022
өлшемі130.16 Kb.
#467327
түріЛекция
1   2   3   4   5   6
Кинематика точки

3. Естественный способ задания движения точки.

Рисунок 2

Естественным способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки М при ее движении относительно системы отсчета Oxyz (рис.2) Выберем на этой траектории какую-нибудь неподвижную точку О', которую примем за начало отсчета, и установим на траектории положительное и отрицательное направления отсчета (как на координатной оси).


Тогда положение точки М на траектории будет однозначно определяться криволинейной координатой s, которая равна расстоянию от точки О' до точки М, измеренному вдоль дуги траектории и взятому с соответствующим знаком. При движении точка М перемещается в положения M1, М2,... . следовательно, расстояние s будет с течением времени изменяться.
Чтобы знать положение точки М на траектории в любой момент времени, надо знать зависимость
.
Уравнение выражает закон движения точки М вдоль траектории.


Вектор скорости точки
Одной из основных кинематических характеристик движе­ния точки является векторная величина, называемая скоростью точки.
Известно, что при движении точки по прямой линии с постоянной скоростью, равномерно, скорость её определяется делением пройденного расстояния s на время: . При неравномерном движении эта формула не годится. Введем сначала понятие о средней скорости точки за какой-нибудь промежуток времени. Пусть движущаяся точка находится

Рисунок 3

в момент времени t в положении М, определяемом радиусом-вектором , а в момент приходит в положение M1 определяемое вектором (рис.3). Тогда перемещение точки за промежуток времени определяется вектором который будем называть вектором перемещения точки. Из треугольника ОММ1 видно, что ; следовательно, .


Отношение вектора перемещения точки к соответствующему промежутку времени дает векторную величину, называемую средней по модулю и направлению скоростью точки за промежуток времени :


.
Скоростью точки в данный момент времени называется векторная величина , к которой стремится средняя скорость при стремлении промежутка времени к нулю:
, .
Итак, вектор скорости точки в данный момент времени равен первой производной от радиуса-вектора точки по времени.
Так как предельным направлением секущей ММ1 является касательная, то вектор скорости точки в данный момент времени направлен по касательной к траектории точки в сторону движения.




Достарыңызбен бөлісу:
1   2   3   4   5   6




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет