Пегги Лиллис, 56-летняя жительница Бруклина181, сменила много работ, иногда даже трудилась на нескольких одновременно, стараясь вырастить двух сыновей. В последние несколько лет жизни она была воспитательницей в детском саду – о таких всегда вспоминают с любовью. В конце марта 2010 года Пегги сходила на прием к стоматологу; в середине апреля умерла.
Медик прописал ей недельный курс антибиотика клиндамицина, который часто дают для профилактики зубных инфекций. К концу недели у женщины началась диарея. Поскольку Пегги работала с маленькими детьми, она решила, что подхватила «желудочный грипп», и осталась дома. Но болезнь продолжалась еще четыре дня. Семья советовала побольше пить, чтобы избежать обезвоживания; на выходных она позвонила врачу. Тот записал ее на прием к гастроэнтерологу на вторник. Но к тому времени Пегги настолько ослабла, что не смогла подняться с постели, и семья вызвала «Скорую помощь». Когда парамедики прибыли, она уже почти впала в шоковое состояние.
В больнице колоноскопия показала, что у Пегги тяжелая инфекция, которую вызывают анаэробные бактерии Clostridium diffi cile. C. diff , как их называют вкратце, живут в кишечнике здоровых людей в небольшой концентрации. Обычно они занимаются своими делами. Но эти микроорганизмы могут нанести ужасный урон, если конкурирующие с ними кишечные бактерии уничтожить антибиотиками. В ослабленном кишечнике они распространяются со скоростью лесного пожара – популяция удваивается каждые двенадцать минут, и они могут стать доминирующим видом всего за несколько часов. C. diff выделяет два или три токсина, с помощью которых заставляет эпителиальные клетки толстой кишки выполнять ее указания. Это помогает выжить ей, но не человеку. Когда токсины начинают свою работу, толстая кишка быстро становится пористой, как губка.
Никто не знает, где женщина подхватила C. diff . Возможно, это были ее собственные, или попали от близких. В госпитале многие пациенты заражаются друг от друга, от рук медсестер и врачей, но она там не лежала. Если толстая кишка здорова, эти микробы блокируются нормальными кишечными бактериями.
Антибиотик, который принимала Пегги, уничтожил их. C. diff быстро размножилась и ослабила стенку кишечника. Содержимое фекалий просочилось через нее в области, где обычно не бывает бактерий. Начался сепсис, поднялась очень высокая температура. По иронии судьбы, для борьбы с ним вновь использовали антибиотики. Когда этого оказалось недостаточно, врачи в отчаянии сделали операцию, удалив большую часть пораженной толстой кишки. Несмотря на героические усилия, Пегги умерла в госпитале – всего через неделю после начала болезни и через две после посещения стоматолога. Как могла такая активная, здоровая, энергичная женщина так быстро сгореть?
Мы знаем о диарее, связанной с антибиотиками, более пятидесяти лет, хотя лишь в конце 70-х обнаружилось, что основной ее причиной является C. dif .
В большинстве случаев болезнь проявляется у госпитализированных пациентов. Это вполне логично, потому что они часто проходят интенсивное лечение медикаментами. Более того, бактерии размножаются спорами, которые могут приземляться на любой поверхности или парить в воздухе. Таким образом, госпитали, переполненные пациентами, могут быть сильно загрязнены. Анализы показывают, что там часто циркулирует один штамм бактерии, но может и сразу несколько. Тем не менее даже единственного курса нужного антибиотика достаточно, чтобы подавить инфекцию у многих пациентов.
Но примерно для трети единственного курса оказывается недостаточно: случаются рецидивы. А после нового лечения – новые рецидивы. Такое может происходить до тридцати раз. Иногда процесс настолько подрывает силы пациента, что он просто не выдерживает и умирает. К счастью, недавно нашли новое решение проблемы.
Нетрудно понять, почему это происходит так часто. Пока кишечная экосистема человека нарушена антибиотиками, всегда есть шанс, что быстроразмножающиеся организмы снова переживут расцвет. Делу не помогает и лечение медикаментами. Более удивительным кажется как раз то, что у двух третей рецидива не наблюдается.
В 90-е годы, когда инфекционный контроль в госпиталях улучшился, в частности, медсестры и врачи стали чаще мыть руки, уборщики – чаще мыть полы, а пациентов с острой диареей начали изолировать, количество C. diff -инфекций уменьшилось. Но полностью от проблемы избавиться не удалось.
За прошедшие десять лет многое изменилось. Пациенты, которых привозят в госпитали, стали в среднем страдать от более тяжелых болезней. Химиотерапия чаще заканчивается успешно, но у нее теперь больше побочных эффектов. Пациенты переживают более сложные операции, но дольше восстанавливаются. Трансплантация органов спасает жизни, но требует приема иммуносупрессантов, что делает людей уязвимее для инфекций. То есть с каждым днем пациентам в больницах прописывают все больше лекарств, в том числе средств, подавляющих кислотность желудка и подвижность кишечника, и конечно же больше антибиотиков, нередко сразу нескольких видов, последовательно или одновременно.
В недавнем исследовании почти двух миллионов182 госпитализированных взрослых рассматривали использование пятидесяти самых популярных антибактериальных средств. Обнаружилось, что на каждую тысячу человеко-часов в больницах приходится в среднем по 776 часов терапии. Сюда входят и нормальные процедуры вроде запланированных курсов лечения и переливания крови, при которых антибиотики обычно не используются. Огромная нагрузка со стороны медикаментов не могла не оказать заметного воздействия на наш коллективный микробиом.
C. diff- инфекции тоже стали тяжелее – больше людей умирает. Что произошло? Анализы показывают изменение штаммов. В спирали ДНК перед геном производства токсина исчез небольшой сегмент. В результате штаммы начали выделять больше токсина, соответственно, эффект разрушительнее.
Еще интереснее для меня то, что у разных штаммов C. diff делеции расположены в разных местах, но все они приводят к повышенному производству токсина183. Для биолога это значит, что на бактерии оказывается сильнейшее давление, приводящее к отбору в пользу гипертоксигенных штаммов. То, что в одно и то же время появилось сразу несколько клонов с похожими функциями, говорит о неких схожих переменах в их окружающей среде. Эти высокотоксичные клоны наблюдаются в Европе и Северной Америке. Это свидетельство того, что одним из факторов может быть обстановка в госпиталях, характерная для развитых стран.
Мы не предвидели одной вещи: как быстро C. dif -инфекции распространятся среди населения: заболевают и люди вроде Пегги Лиллис, никогда не лежавшие в больницах; некоторые умирают. Микроорганизм сбежал из госпиталей, словно лев из зоопарка, и теперь разгуливает на свободе. Те же самые клоны через пассажиров самолетов перебрались на другие континенты и стали орудовать там – паспорта для этого не нужны. В США каждый год в больницы попадают до 250 000 пациентов с C. dif, которую они подхватили либо в прошлый визит в больницу, либо дома; 14 000 из них умирают.
То же самое произошло и с МРЗС, сопротивляющейся антибиотикам стафилококковой инфекцией, поразившей, как вы помните из предыдущих глав, в том числе двух футболистов. Двадцать лет назад эта болезнь встречалась исключительно в больницах. Но сейчас инфекции получают те, кто никогда в жизни не лежал там. Появляются более вирулентные штаммы МРЗС. То, что два кризиса – с C. diff и с МРЗС – обладают настолько похожими характеристиками и начались практически в одно время, говорит о том, что человеческая микробная экология переживает огромные изменения.
Эти истории пугают сами по себе, но, к сожалению, они лишь предвестники будущего. Распространение патогенов вне их «естественного» резервуара, больниц, среди широких слоев населения на разных континентах представляет серьезнейшую угрозу нашему здоровью. Поиск способов остановить распространение этих смертоносных микробов должен стать приоритетным.
Центры по контролю и профилактике заболеваний в сентябре 2013 года опубликовали важнейший доклад: первую информацию о распространении резистентных к лекарствам бактерий в США184. Было перечислено восемнадцать микробов; три из них назвали «крайне опасными». Возглавила список сравнительно новая группа микробов под названием КРЭ – это аббревиатура от «карбапенем-резистентные энтеробактерии». Они убивают многих заразившихся и сопротивляются действию практически всех антибиотиков. Более того, КРЭ умеют передавать гены резистентности другим микроорганизмам, занимаясь с ними микробным «сексом». Их уже обнаружили в больницах сорока четырех штатов. Второе и третье место заняли C. diff и гонорея. МРЗС получил рейтинг «серьезная опасность»: 18 000 заражений в год, 11 000 смертей.
Доктор Том Фриден, возглавляющий центр, предупредил, что «антимикробная резистентность растет во всех поселениях, во всех здравоохранительных учреждениях и среди пациентов практикующих врачей по всей стране. Не менее 2 миллионов американцев каждый год заражаются инфекциями, резистентными к антибиотикам, 23 000 из них умирают. Вот что происходит, когда микробам удается перехитрить наши лучшие антибиотики». И добавил, что мы столкнулись с «катастрофическими последствиями» избыточного применения антибиотиков и что «в последующие месяцы и годы, возможно, не сможем предложить никаких лекарств пациентам с инфекциями, которые опасны для жизни».
* * *
У нас есть домик в Скалистых горах. Он стоит на горном кряже посреди широкой долины, окруженной высокими пиками. Это горы, на вершинах которых девять месяцев в году лежит снег, и даже летом видны ледяные участки. Они зеленые от деревьев практически снизу доверху, лишь на верхушках ничего не растет. Вечный, грубый, величественный пейзаж.
До недавнего времени леса были густыми – даже слишком. Там росли деревья всех возрастов: огромные сосны, устремленные в небо словно гигантские стрелы; вокруг – зеленые и голубые ели и осиновые рощи. Повсюду виднелись молодые сосенки с иголками нежно-зеленого цвета.
Но около десяти лет назад в нашу долину пришел жучок-короед. Точнее, скорее всего он всегда там жил, но его сдерживали суровые зимы. Сейчас же, когда климат изменился и сильно потеплело, жучок вернулся во всеоружии и поедает лес, уничтожая целые горные склоны. 90 % деревьев мертвы, и одного пожара хватит, чтобы превратить их в пепел.
То, что происходит с пейзажем в Колорадо – отличная метафора для моей гипотезы пропавших микробов. Как и жучок-короед, человеческие патогены постоянно окружают нас, но их распространение зависит от определенных условий. Как легко они могут передаваться от человека к человеку? Насколько уязвимы для атаки? Как плотно живут носители? Насколько здорово население в целом? Что происходит, когда экология меняется не в природе, а внутри человека? Что будет, если люди утратят свое биоразнообразие? Что, если мы потеряем «краеугольные камни», поддерживающие стабильность системы?
В начале 50-х годов, за несколько десятилетий до того, как обнаружилось, что C. diff вызывает «антибиотиковую диарею», Марджори Бонхофф и Филлип Миллер провели серию экспериментов, чтобы определить роль нормальной флоры – тогда этим термином называли наших микробов-обитателей – в защите от болезнетворных бактерий185. Ученые считали, что они действительно играют защитную роль, и проверили гипотезу, скормив мышам Salmonella enteriditis , вид сальмонелл, которые вызывают болезни и у мышей, и у людей. Чтобы вызвать инфекцию хотя бы у половины популяции, потребовалось около ста тысяч микроорганизмов. Но если грызуны сначала получали одну оральную дозу антибиотика стрептомицина, а затем, через несколько дней, сальмонелл, для развития инфекции нужно было всего три микроорганизма. Это разница не в 10–20 %, а в 30 000 раз. Добро пожаловать в мир бактерий.
Работу продолжили и показали, что эффект не ограничивается одним стрептомицином. Другие антибиотики, в том числе пенициллин, приводили к той же самой ситуации. Даже если последняя доза антибиотика была несколько недель назад, инфекция все равно вызывалась небольшим количеством микроорганизмов. За шестьдесят лет другие ученые подтвердили и уточнили эти результаты. По крайней мере у мышей воздействие любых, самых разных антибиотиков, повышает восприимчивость к инфекции, а это иногда может закончиться смертью. Но проявляется ли тот же феномен у людей?
В 1985 году произошла эпидемия сальмонелловых инфекций в Чикаго. Не менее 160 000 человек заболели, несколько умерли186. Чем могло быть вызвано событие, которое сказалось на таком количестве жителей одного города? Обычно главных виновников два: вода и молоко. Муниципальная система водоснабжения очень тщательно регулируется и контролируется, так что ее можно было сразу исключить из рассмотрения. К тому же некоторые заболевшие жили даже не в городе, а в пригородах с отдельными водопроводами.
Так что подозрения пали на молоко, и после тщательного расследования подтвердились. Если точнее, причиной стало употребление в пищу молока из «супермаркета A», сети продовольственных магазинов, встречавшихся чуть ли не на каждом углу. Поставлялось оно с единственной крупной молочной фермы – огромного промышленного комбината с километрами труб и объемистыми баками. Там производилось более миллиона галлонов молока в неделю. Я посетил ее с инспекцией как эксперт, привлеченный частными лицами, которые подали против компании групповой иск.
Для нашей истории самое большое значение имеет исследование, которое департамент здравоохранения провел среди пятидесяти жертв эпидемии и пятидесяти человек из контрольной группы, которые не болели. Всем им был задан простой вопрос: «Принимали ли вы антибиотики в последний месяц перед эпидемией?» В группе заболевших был большой процент утвердительных ответов – в 5,5 раз больше, чем в группе здоровых.
Их воздействие сделало людей более уязвимыми для Salmonella . В экспериментах ПЛА, описанных несколькими главами ранее, мышам давали последнюю дозу антибиотика в возрасте сорока дней. Но даже через сто дней мы по-прежнему видели, что состав их кишечных микробов значительно нарушен.
Вряд ли врачи предупреждали жителей, что прием антибиотиков сделает их уязвимее для инфекций. Вам хоть один медработник когда-либо что-то похожее говорил? А ведь повышенная уязвимость для новых инфекций – одна из скрытых издержек приема лекарств.
Теперь, наконец, можно ответить на один из главных вопросов книги: как антибиотики могут оказывать долгосрочное воздействие на наших микробов-обитателей? В более раннюю эпоху мы полагались на «индикаторные» микроорганизмы, которые давали представление обо всей популяции. Например, E. coli в поверхностных водах указывает на загрязнение водоема фекалиями.
В 2001 году мой шведский коллега и хороший друг доктор Ларс Энгстранд пригласил меня присоединиться к исследованию, как антибиотики действуют на индикаторные бактерии, которые находят в человеческом кишечнике и на коже187. Мы использовали распространенные колонизирующие бактерии, которые легко вырастить в культуре: Enterococcus fecalis – для желудочно-кишечного тракта и Staphylococcus epidermidis – для кожи. Увеличится ли количество резистентных бактерий после недельного курса антибиотика-макролида (в данном случае кларитромицина), который прописывают для уничтожения H. pylori ?
К сожалению, эксперимент сработал великолепно. До приема антибиотиков у подопытных было очень мало макролид-резистентных Enterococcus и Staphylococcus , как и у контрольной группы. Но вот после приема антибиотиков все изменилось – сразу после лечения количество макролид-резистентных индикаторных микроорганизмов значительно увеличилось – и в фекалиях, и на коже. У контрольной группы таких изменений не наблюдалось.
Но наш основной вопрос был другим: как долго продлится их процветание без дальнейшего приема лекарств. Результаты были отрезвляющими. У тех, кто получал антибиотики, резистентные E. fecalis были обнаружены даже через три года после лечения, а S. epidermidis – через четыре. На этом исследования завершились, так что не известно, сколько еще они продержались после этого. Мне кажется удивительным, что недельный курс может способствовать выживанию резистентных организмов спустя столько времени, причем на участках тела, далеких от основной цели антибиотика.
Кроме того, мы захотели узнать, все ли штаммы, присутствовавшие перед началом исследования, выжили через три года, или же им на смену пришли другие штаммы того же вида. И с помощью методов ДНК-дактилоскопии обнаружилось, что до начала исследований у всех членов контрольной группы было по несколько штаммов Enterococcus , которые в основном и сохранились. Однако у группы, получавшей антибиотики, штаммы, присутствовавшие до лечения, по большей части исчезли и сменились другими. Причем в течение трехлетнего исследования появлялись штаммы с новыми ДНК-отпечатками. Иными словами, мы не только осуществили отбор по резистентности (и отобранные микроорганизмы выжили), но и разрушили ранее существовавшие популяции Enterococcus . Неизвестно, присутствовали ли эти новые штаммы все время в небольших количествах, или же были приобретены недавно, но так или иначе недельный курс антибиотиков привел к долгосрочному и совершенно незапланированному воздействию на стабильность определенных штаммов индикаторного микроорганизма.
Методами нашего исследования невозможно подтвердить, ведут ли такие перемены к болезням. Если какой-то эффект и есть, то, как мне кажется, в обычных условиях риск будет небольшим. Но мы не знаем совокупного эффекта миллиардов доз антибиотиков, которые получают сотни миллионов людей. Широкое их распространение, несомненно, увеличивает пул резистентных генов, в том числе тех, которые патогены могут получить от наших дружественных бактерий. Но эксперименты с Salmonella на мышах, чикагская эпидемия и нынешняя эпидемия C. diff -инфекций показывают, что лечение антибиотиками увеличивает уязвимость для патогенов. Это еще одна скрытая издержка от изменения нашей внутренней экосистемы.
* * *
Уже сейчас ясно, что даже краткие курсы медикаментов могут привести к долгосрочным изменениям состава микробов, населяющих наши тела. Полное или хотя бы частичное восстановление здоровых бактерий вовсе не гарантировано, хотя долго считалось, что дело обстоит именно так. Но это не единственное, что меня беспокоит. Ведь некоторые наши обитатели – которых я называю «микробами на всякий случай» – могут вымереть полностью.
Недавние исследования микроорганизмов показали, что в людях живет небольшое количество видов, встречающихся в изобилии, и много видов, численность которых меньше188. Например, в вашей толстой кишке могут жить триллионы Bacteroides и всего тысяча, а то и меньше, клеток других бактерий. Мы не знаем, сколько их всего, но если у вас, допустим, пятьдесят клеток какой-нибудь бактерии, среди триллионов ее обнаружить почти нереально.
Такая ситуация напоминает мне «Где Уолдо?», детскую книжку с картинками, на которых десятки людей занимаются своими делами, работают, играют, а персонаж по имени Уолдо спрятался где-то в этой толпе. Задача ребенка – найти Уолдо. Если бы «Уолдо» был редким микробом и пропал, мы его отсутствия даже не заметили бы. Конкретные поиски не в счет. Когда вы принимаете антибиотик широкого спектра действия (а их прописывают чаще всего), вполне возможно, что при этом полностью уничтожается один из видов ваших редких микробов. С нулевой популяции восстановиться уже невозможно – с точки зрения вашего тела этот вид вымирает.
Почему это важно? Со всех точек зрения виды, существующие в таких жалких количествах, не могут играть никакой важной роли. Но у микробов есть мощная стратагема выживания. Любая небольшая популяция, например, из нескольких сотен клеток, может пережить взрывной рост, и за неделю их станет уже десять миллиардов или даже больше. Триггером для расцвета может стать, например, компонент пищи, которую вы едите в первый раз и переварить которую могут только эти редкие микробы, с помощью вырабатываемых ферментов. Благодаря новому эксклюзивному источнику пищи редкий микроб получает возможность развернуться на всю катушку и размножиться на миллион процентов. Это процветание может принести пользу и вам, потому что некоторая часть энергии, полученная от новой пищи, может попасть в кровеносную систему. Это было полезно при дефиците еды, который до недавнего времени был обычным делом для большинства людей. По этой причине приходилось есть незнакомые растения и животных и иметь большой репертуар ферментов, которые помогали переваривать эти пищевые химические вещества.
А теперь давайте подумаем, что получится, если один из ваших редких микробов вымрет. Предположим, что он древний и жил в Homo sapiens 200 000 лет. Один из вариантов – ничего не изменится. Может быть, этот микроб был просто «пассажиром», который не делал ничего полезного. Другой вариант – это микроорганизм «на всякий случай». Вы носите его в своем багаже не для повседневного использования; он больше напоминает шипованные ботинки, которые очень полезны, когда нужно забраться на ледник, но все остальное время лежат в рюкзаке мертвым грузом. Потеря подобных вещей «на всякий случай» тоже не сильно скажется на вашей жизни, если, конечно, не придется столкнуться с ледником.
Третий вариант – эти виды могут понадобиться только на определенном этапе жизни, как например трость, которую вы держите на чердаке, – пригодится в старости. Можно сказать, что потеря микробов «на всякий случай» приводит к потере биоразнообразия. Еще один пример: на кукурузных полях в Айове растет одинаковый высокоурожайный сорт кукурузы. В течение какого-то времени все будет хорошо. Но если появится патоген – допустим, кукурузный грибок, который поражает именно этот высокоурожайный сорт, то поля окажутся уязвимыми. За несколько недель от прекрасных полей могут остаться лишь акры мертвых растений, а вскоре начнется голод. Даже небольшое уменьшение биоразнообразия может сделать сообщество более уязвимым для нового патогена. И, как видно на примере жучка-короеда или C. diff , они существуют всегда. И новые будут появляться всегда – это закон природы.
Эпидемия, начинающаяся в одной местности, может подвергнуть риску весь мир. Мы видим это на примере гриппа. Когда в 2009 году в Мексике обнаружили новый штамм, через несколько дней им уже болели в Калифорнии и Техасе, а еще через несколько дней – в Нью-Йорке. За несколько недель он распространился по всем США и пошел дальше. Нам повезло, что штамм оказался не смертельно опасным, учитывая, что заразились сотни миллионов. Несмотря на сравнительную мягкость, от него умерли тысячи людей по всему миру. Даже когда штамм не очень вирулентный, но им заражаются миллиарды людей, количество смертельных случаев получается довольно значительным. А если штамм опасный, как в 1918–1919 годах, потери исчисляются в миллионах. Еще нам повезло в 2002 году с эпидемией атипичной пневмонии, которую вызывал вирус, недавно перешедший от животных, скорее всего, от летучих мышей. К счастью, механизм передачи от человека к человеку оказался не очень эффективным. В нескольких районах вирус нанес немалый вред, но затем вымер из-за неспособности эффективно передаваться между людьми. От этой «пули» мы увернулись.
«Испанка» в 1918–1919 годах убила десятки миллионов, хотя тогда не было ни пассажирских самолетов, ни других средств скоростного массового транспорта, которые способствовали бы распространению. Сейчас же, когда население мира огромно и, по сути, едино, а защита ослаблена из-за нарушений внутренней экосистемы, мы уязвимы как никогда.
Наша растущая уязвимость к патогенам из-за того, что мир стал намного теснее, чем раньше, совпала с деградацией наших древних микробных систем защиты. Подобное совпадение подбрасывает новые «бревна» в «пожары» – либо сравнительно локального масштаба, вроде эпидемий Salmonella или E. coli , либо в потенциале глобального. Последствия подобного развития событий очень трудно представить, но есть прецеденты. В XIV веке в Европе свирепствовала «черная смерть». Мы до сих пор неполностью понимаем ее причины, но отчасти она была обусловлена изменением популяции грызунов. Еще один фактор – перенаселенные, грязные средневековые города, которые вспыхнули от «огня» переносимой крысами чумы, как хворост. Эпидемия бушевала четыре года; когда она закончилась, погибло около трети населения Европы, а это ни много ни мало 25 миллионов человек.
«Чума XX века», СПИД, поразила более 100 миллионов человек с тех пор, как передалась нам от шимпанзе. ВИЧ-инфекция, конечно, ужасна, но она не так просто передается от человека к человеку, как, скажем, вирус гриппа. Так что в каком-то смысле – с точки зрения скорости распространения – она не так страшна, как быстро разлетающаяся эпидемия.
Впрочем, меня скорее интересует не то, что прошло, а то, что нас ждет дальше. Когда люди собираются в больших количествах, эпидемии неизбежны. Учитывая, что население планеты составляет 7 миллиардов человек и растет примерно на 80 миллионов в год (это равно населению Германии), вопросы стоят так: что вызовет следующую «чуму», кто будет к ней уязвим и когда она начнется. Меры здравоохранения, конечно, уменьшат ущерб, но, вполне возможно, их может оказаться недостаточно.
Я вижу немало параллелей между изменениями климата и состава наших микробов-обитателей. Современные эпидемии – астма и аллергии, ожирение, расстройства обмена веществ – это не просто болезни, а внешние признаки внутренних изменений. Мы можем столкнуться с этой проблемой в любой момент. Например, ребенок с измененной микробной экосистемой и ослабленным иммунитетом может встретиться с легким патогеном, который тем не менее способен повредить его поджелудочную железу и вызвать ювенильный диабет. Или же проблема проявится, когда другой ребенок съест арахис или глютен – в данном случае есть риск тяжелой аллергии. Это не просто опасно, но и является признаком более серьезных нарушений баланса, потери наших резервов.
Скорее всего, потенциально смертоносный мутировавший микроб уже сейчас живет в каком-нибудь животном. Возможно, он получил новый ген, который помогает ему распространяться. Может быть, он переберется в какое-нибудь из наших сельскохозяйственных животных. Может быть, он перепрыгнет в промежуточного носителя, может быть, новыми носителями станем мы. Так или иначе, тучи уже сгустились.
К счастью, люди более или менее подготовлены к подобным «штормам»: наши разнообразные микробы и их 20 миллионов генов помогают сопротивляться болезням. Это партизаны, которые защищают свою родину, пока мы защищаем их самих. Но недавние исследования показывают, что некоторые вполне здоровые люди утратили от 15 до 40 % своего микробного разнообразия и гены, содержащиеся в них189.
Самая большая опасность, грозящая нам: патогены, способные вызвать эпидемию, против которой мы беспомощны. Экологическая теория говорит, что люди, у которых состав бактерий-обитателей нарушен сильнее, окажутся наиболее уязвимы. При прочих равных условиях рискуют страдающие ожирением, астмой и другими современными эпидемическими заболеваниями. Генетические исследования говорят, что мы все – потомки довольно небольшой исходной популяции. Наши предки, возможно, пережили какой-то катаклизм, связанный, что не исключено, с изменениями климата. Но несмотря на современные дебаты по поводу глобального потепления, это не главная наша проблема, по моему мнению.
Если ничего не изменить, нас ждет «антибиотиковая зима» – куда более огромная опасность, всемирная эпидемия, которую не удастся остановить. Популяционная биология против нас: мы уже не защищены изоляцией, потому что живем в одной огромной взаимосвязанной деревне. Причем миллионы живут с ослабленной защитой. Когда придет новая чума, она, вполне возможно, будет быстрой и безжалостной, как вышедшая из берегов река, от которой негде спастись. Усугубило ситуацию безответственное, расточительное злоупотребление антибиотиками – думаю, оглядываясь назад, мы назовем эту эпоху именно так. И это самая главная причина, по которой я бью тревогу.
Мы говорили об эре до антибиотиков и эре антибиотиков; если не станем осторожнее, то вскоре нас ждет эра после антибиотиков. Сейчас эту тему всерьез рассматривает Центр по контролю и профилактике заболеваний, и я разделяю их беспокойство. Но я обдумываю другую идею: дело не только в том, что лекарства перестанут действовать из-за резистентности, но и в том, что миллионы людей становятся уязвимее из-за деградировавшей экосистемы. Одно связано с другим, но в нашем тесном мире второй фактор – это всемирный потоп, который может начаться буквально со дня на день.
Достарыңызбен бөлісу: |