Оливер сакс человек,который принял жену за шляпу и другие истории из врачебной практики Санкт-Петербург • 2006



бет15/17
Дата05.07.2016
өлшемі1.42 Mb.
#178802
1   ...   9   10   11   12   13   14   15   16   17

263

«гармонична» независимо от коэффициента умственного развития, и потребность найти и почувствовать высшую гармонию, высший порядок в любой доступной форме является, похоже, универсальным свойством разума, независимо от его мощности.

Математику называют «царицей наук», и математики всегда считали число великой тайной. Мир неизменно казался им организованным загадочной силой числа. Это замечательно описано в предисловии к «Автобиографии» Бертрана Рассела*:

С неменьшей страстью стремился я к знанию. Я жаждал проникнуть в человеческое сердце, дал узнать, почему светят звезды. Я стремился также разгадать загадку пифагорейства понять власть числа над текучей, изменяющейся природой.

Странно, казалось бы, сравнивать недоразвитых близнецов с такой выдающейся личностью и глубоким умом, как Бертран Рассел, и все же я думаю, что это сравнение естественно. Да, близнецы живут исключительно в мысленном мире чисел и не испытывают ни малейшего интереса ни к сиянию звезд, ни к человеческим сердцам, но я уверен, что числа для них — не просто абстрактные и пустые сущности, а символы, «обозначающие» мир.

Многие известные счетчики относятся к числам просто как к материалу. Но только не близнецы. Недоступные им механические вычисления совершенно их не интересуют. Они, скорее, тихие созерцатели чисел и относятся к ним с благоговением и трепетом, как к священным объектам. Это их способ постижения Первого Композитора — как музыка для Мартина А.

Но и это не все. Числа для близнецов — не только божественные сущности, но и близкие друзья — возможно, единственные друзья в их отрезанном от нашей реальности мире. Такое отношение часто встречается среди числовых вундеркиндов. Стивен Смит, подчеркивая решающее значение метода и алгоритма для известных счетчиков,

* Бертран Рассел (1872—1970) — английский философ, математик, логик, общественный деятель.

264

приводит тем не менее замечательные примеры подобной дружбы. Описывая свое «числовое» детство, Джордж Паркер Биддер говорит: «Я близко знал все числа до ста; они как бы стали моими друзьями, мне были знакомы их родственные связи и круг общения». Его современник Шиам Марат из Индии объясняет: «Когда я называю число своим другом, то хочу сказать, что мы уже много раз по разным поводам сталкивались в прошлом, и во время таких встреч я обнаруживал все новые скрытые в нем восхитительные свойства... Так что если при вычислениях мне попадается знакомое число, я радуюсь встрече с добрым приятелем».

Герман фон Гельмгольц*, рассуждая о музыкальных способностях, пишет, что, хотя составные звуки и можно разложить на компоненты, мы слышим их обычно как неделимое целое, уникальный тон. Он говорит о «синтетическом восприятии», которое выходит за пределы интеллекта и представляет собой не поддающуюся анализу сущность музыкального чувства. Гельмгольц сравнивает звуки с лицами и считает, что мы, возможно, распознаем и те и другие сходным образом. Он почти всерьез говорит о звуках и мелодиях как об обращенных к слуху «лицах», которые мы немедленно узнаем как знакомых, со всем теплом и эмоциональной глубиной человеческого отношения.

Это же, по-видимому, справедливо не только для любителей музыки, но и для любителей чисел. Числа тоже становятся их близкими знакомыми и удостаиваются интуитивного и личного «Я тебя знаю!»**. Математик Вим Кляйн описал это так: «Числа — мои друзья. Возьмем 3844

* Герман фон Гельмгольц (1821—1894) — немецкий физик, физиолог и психолог.

** Восприятие и распознавание лиц поднимает особенно интересные и фундаментальные проблемы, поскольку, согласно многочисленным свидетельствам, мы узнаем лица (по крайней мере, знакомые) непосредственно, а не путем анализа частей и их сочетания. Это сильнее всего бросается в глаза при «прозопагнозии», когда в результате повреждения затылочных отделов коры головного мозга пациенты теряют способность распознавать лица и вынуждены находить сложные, абсурдные обходные пути, включающие поэтапный анализ не имеющих самостоятельного смысла отдельных черт (см. главу 1). (Прим. автора)



265

что вам это число? Для вас это просто три, восемь, четыре и четыре. А я говорю: „Привет, 62 в квадрате!"»

Мне кажется, что с виду одинокие близнецы живут в мире, полком друзей, — у них есть миллионы, миллиарды приятелей, которым они говорят «Привет!» и которые, я уверен, откликаются на это приветствие... И ни одно из этих чисел для них не произвольно, хотя и не является результатом стандартных расчетов. Вряд ли тут вообще замешаны расчеты. Близнецам, как ангелам, доступно прямое знание. Они непосредственно усматривают арифметическую вселенную, бескрайние небеса чисел... Имеем ли мы право называть это патологией? Какой бы странной, какой бы нечеловеческой ни казалась нам такая способность, на ней зиждется уникальная самодостаточность и покой их жизни. Разрушение этого фундамента может обернуться для них трагедией.
Десять лет спустя произошло именно это — близнецов разлучили. Полные медицинского и социологического жаргона обоснования сообщали, что делается это «для их собственного блага», для предотвращения их «нездорового общения друг с другом», а также «чтобы дать им возможность, оказавшись лицом к лицу с миром... жить в нем в соответствии с мерками общества и установленным порядком». Произошло это в 1977 году, и все, что случилось в результате, можно считать успехом, а можно и катастрофой. Майкла и Джона поместили в отдельные пансионы и обеспечили неквалифицированной работой. Находясь под тщательным наблюдением, они с трудом зарабатывают на карманные расходы. Сейчас оба в состоянии проехать на автобусе — если дать им билет и подробные указания. Они также могут поддерживать личную гигиену и по мере сил следить за своим внешним видом. Однако, несмотря на все это, их слабоумие и психические расстройства до сих пор различимы с первого взгляда.

Такова позитивная сторона принятых мер, но есть и негативная, о которой не упоминается в их историях болезни, поскольку ущерба, нанесенного близнецам, вообще



266

не признают. Лишившись числового «общения» и, тем самым, духовной связи с кем бы то ни было (их вечно теребят и перебрасывают с одной работы на другую), близнецы потеряли свои странные способности, а с ними единственную радость и смысл жизни. Не сомневаюсь, что это сочтут у нас умеренной платой за суррогат независимости и возвращение в «лоно общества».

Такое обращение с близнецами напоминает лечение, которому подвергли Надю, аутичную девочку с выдающимися способностями к рисованию (см. главу 24). Ей также прописали режим усиленной терапии, дабы «выяснить, как максимизировать ее возможности в других направлениях». В результате она стала говорить — и перестала рисовать. Найджел Деннис по этому поводу замечает: «У гения отняли гениальность, оставив только общую недоразвитость. Что нам думать о таком странном исцелении?»

Ф. Майерс, начиная главу «Гениальность» с обсуждения арифметических гениев, утверждает, что «странные» способности некоторых людей часто нестабильны и могут вдруг исчезнуть без всяких видимых причин; иногда же, напротив, они сохраняются в течение всей жизни. В случае близнецов это были, конечно, не просто «способности», но личностная и эмоциональная основа всего их существования. Разлучившись и утратив ее, они духовно погибли*.



Постскриптум

Израиль Розенфельд, прочитав рукопись этой главы, рассказал мне о высших разделах арифметики, в которых некоторые операции выполнять проще, чем привычными способами. Он также поинтересовался, не связаны ли особые способности близнецов (и пределы этих способно-

* Опасаясь, что высказанные здесь мнения покажутся некоторым читателям слишком резкими и предвзятыми, спешу отметить, что в случае близнецов Лурии разлучение стало ключевым моментом развития; оно разомкнуло порочную связь их бессмысленной болтовни и позволило им превратиться в здоровых творческих людей. (Прим. автора)

267

стей) с использованием такой «модулярной» арифметики. В письме ко мне он высказал предположение, что календарные таланты близнецов могут объясняться специальными модулярными алгоритмами, описанными в книге Яна Стюарта «Концепции современной математики» (1975). Вот выдержка из этого письма:



Их способность определять дни недели в пределах восьмидесяти тысяч лет предполагает довольно простой алгоритм. Нужно разделить число дней между «сейчас» и «тогда» на семь*. Если делится без остатка, это тот же день недели, что и сегодня. Если в остатке единица, то это на день позже и т. д. Заметьте, что модулярная арифметика циклична, она основана на повторении комбинаций. Возможно, близнецы могли видеть эти комбинации либо в форме легко конструируемых диаграмм, либо как своего рода «ландшафт», спираль из целых чисел, напоминающую рисунок на 30-й странице книги Стюарта.

Это не объясняет, почему близнецы пользуются языком простых чисел, но здесь возможно следующее: календарная арифметика основана на простом числе семь, и если думать о модулярной арифметике вообще, то деление в ней дает элегантные циклические комбинации только для простых чисел. Поскольку число семь помогает близнецам восстанавливать даты, а вместе с ними конкретные события их жизни, они могли обнаружить, что другие простые числа производят комбинации, похожие на те, которые так важны для актов воспоминания. (Когда они говорят о спичках «111 трижды 37», заметьте, что они берут простое число 37 и умножают его на три). Возможно, только простые числа могут быть «увидены».

* Следует заметить, что речь идет только о последнем, самом простом шаге вычислений. Основная трудность задачи заключается именно в подсчете количества дней между двумя датами.



268

Разнообразные сочетания чисел (например, таблицы умножения) могут быть блоками визуальной информации, которой обмениваются близнецы, называя то или иное простое число. Короче говоря, модулярная арифметика помогает им восстанавливать прошлое, и поэтому комбинации, возникающие при таких вычислениях и возможные только при использовании простых чисел, скорее всего, имеют для близнецов особое значение.

Ян Стюарт в своей книге отмечает, что, пользуясь модулярной арифметикой, можно быстро получать ответ в ситуациях, когда обычная арифметика не работает, — в особенности применяя к большим, не вычислимым традиционными способами простым числам так называемый принцип «зайцев и клеток»*.

Если такие методы и являются алгоритмами, то алгоритмы эти очень необычны. Они организованы не алгебраически, а пространственно, как деревья, спирали, архитектурные и ментальные конструкции — конфигурации в формальном (но чувственно воспринимаемом) внутреннем пространстве.

Замечания Израиля Розенфельда и модулярная арифметика Яна Стюарта показались мне многообещающими. Они открывают возможность если не «решить» загадку близнецов, то, по крайней мере, пролить свет на их необъяснимые способности.

Начала высшей арифметики (теории чисел) были заложены Гауссом в 1801 году в книге «Арифметические исследования», но на практике эта теория стала применяться совсем недавно. Возникает вопрос: а не существует ли наряду с обычной арифметикой операций — трудной для изучения и часто вызывающей раздражение и учеников, и преподавателей — другой, глубокой арифметики, сходной с тем, что описал Гаусс? Нет ли в нас такой же

* Популярная формулировка известного в математике принципа Дирихле: если в N клетках сидит более N зайцев, то найдется клетка, в которой сидит не менее двух зайцев.



269

врожденной и естественно присущей мозгу арифметики, как «глубокий» синтаксис и порождающая грамматика Хомского*? Если подобная арифметика существует, то в наших близнецах мы видим ее Большой Взрыв — живые созвездия чисел, ветвящиеся числовые галактики в бесконечно расширяющемся космосе сознания.

Я уже отмечал, что после публикации «Близнецов» я получил огромное количество писем — как личных, так и научных. Некоторые из них касались вопросов об однояйцовых близнецах, другие — способов чувственного восприятия чисел и смысла и значения этого явления. Были и письма, посвященные способностям и психологии аутистов, а также методам их воспитания и обучения. Особенно интересными оказались письма от родителей таких детей. В моей корреспонденции попадались редкие, замечательные послания от тех, кого болезнь ребенка заставила обратиться к литературе и начать самостоятельные исследования. Эти люди сумели соединить глубокие эмоции и личную вовлеченность с абсолютной объективностью. К ним принадлежит чета Парк, удивительно одаренные родители аутичной девочки-вундеркинда по имени Элла**. Дочь их замечательно рисовала, а в ранние годы обладала и выдающимися арифметическими способностями. Ее занимали «порядки» чисел, особенно простых. Такое специфическое ощущение простых чисел, судя по всему, не столь уж редко. Миссис Парк написала мне еще об одном известном ей аутичном ребенке, который «навязчиво» исписывал листы бумаги числами. «Все эти числа были простые, — замечает она. — Простые числа окно в другой мир». Позже я узнал от нее об аутичном юноше, который также увлекался множителями и простыми числами и немедленно замечал их «особость». Если его, к примеру, спрашивали: «Джо, нет ли чего-нибудь особенного в числе 4875?» — он отвечал: «Оно делится только на 13 и 25».

* Ноэм Хомский (р. 1928) — американский лингвист и философ языка, основоположник генеративного направления в лингвистике.

** См. С. С. Park, 1967 and D. Park, 1974, pp. 313—323. (Прим. автора)

270

О числе 7241 он тут же говорил: «Оно делится на 13 и 557», а о числе 8741 — что оно простое. «Никто в его семье, — подчеркивала миссис Парк, — не поддерживает одинокой страсти Джо к простым числам».

Как в таких случаях удается дать мгновенный ответ, непонятно. Есть несколько возможностей: множители вычисляются, запоминаются или каким-то образом просто «наблюдаются». Но каким бы способом человек ни находил ответ, наличие своеобразного чувства важности простых чисел и наслаждения от них отрицать не приходится. Отчасти это имеет отношение к восприятию формальной красоты и симметрии, отчасти же — к ощущаемым в простых числах «смыслу» и «скрытой силе». Элла часто называла эти числа волшебными: они вызывали в ней такие особенные чувства, мысли и ассоциации, что она об этом почти никому не рассказывала. Все это хорошо описано в статье ее отца, Дэвида Парка.

Курт Гедель* на самом общем уровне обсуждает, как числа, особенно простые, могут служить «метками» идей, людей, мест и т. д. Судя по всему, эта геделевская маркировка есть промежуточный шаг к общей «арифметизации» и «нумерации» мира**. Если предположить, что такая гипотеза верна, близнецы и им подобные живут не в изолированном мире чисел, но — естественно и свободно — в реальном мире, лишь представленном в числовой форме. И если к этой форме, к этому шифру удается подобрать ключ (как случается иногда Дэвиду Парку), числа становятся удивительным и точным языком для общения с обитателями этого мира.

* Курт Гедель (1906—1978) — австрийский логик, автор знаменитой теоремы о неполноте.

** См. Е. Nagel and J. R. Newman, 1958. Рус. пер. Нагель Э., Ньюмен Д. Теорема Геделя // Пер. с англ. Ю. А. Гастева. М.: Знание, 1970.



271

[24]. Художник-аутист

— НАРИСУЙ-КА вот эту штуку, — говорю я, протягивая Хосе свои карманные часы.

Ему двадцать один год; диагноз — безнадежная умственная неполноценность. Несколько часов назад с ним случился сильнейший судорожный припадок — такое происходит регулярно. Худой, хрупкий юноша...

Услышав просьбу порисовать, внезапно преображается. Нет больше рассеянности, нет скрытой тревоги. Осторожно, как талисман или драгоценность, берет часы, кладет перед собой, долго, внимательно изучает.

— Да он же идиот, — вмешивается смотритель. — И просить не стоит. Он даже не знает, что такое часы, время сказать не может. Он и говорить-то практически не умеет. Врачи его аутистом зовут, а по мне — чистый идиот.

Хосе бледнеет — скорее от тона, чем от самих слов: смотритель сказал раньше, что слов он не понимает.

— Давай, — говорю я ему. — Я знаю, ты можешь.

272

Хосе рисует в абсолютной тишине, полностью отключившись от внешнего мира и сосредоточившись на маленьком предмете. В первый раз я замечаю в нем решительность, собранность, концентрацию внимания. Он рисует быстро, но тщательно — твердой, четкой линией, ничего не стирая.

Если можно, я почти всегда прошу пациентов что-нибудь написать или нарисовать. С одной стороны, это помогает определить примерный перечень нарушений, с другой — в письме и рисунке проявляется человеческий характер, стиль.

Вот и сейчас результаты налицо. Хосе на удивление верно воспроизвел часы. Все элементы на месте (во всяком случае, все ключевые элементы — нет только надписей «Westclox», «shock resistant», «made in USA»). Ha рисунке отражено не просто точное время (11:31), но и каждое минутное деление, внутренний секундный циферблат и, наконец, ребристый винт завода и трапециевидное ушко для цепочки. Ушко удивительным образом вы-



273

росло, но во всем остальном пропорции сохранены. Ах да, цифры! — они оказались разных размеров и форм, одни тонкие, другие толстые, некоторые вдоль ободка, другие ближе к центру; кроме обычных, попадаются замысловатые, даже как будто готические. И внутренний циферблат — в оригинале он почти не заметен, а на рисунке виден отчетливо, как на старинных астролябиях. Общее впечатление передано поразительно верно, часы ожили

— а ведь смотритель сказал, что Хосе не понимает, что такое время. В целом, странная смесь абсолютной, почти навязчивой точности и любопытных вариаций.

Как же так, — не могу успокоиться я по пути домой,

— идиот, аутист? Нет-нет, тут должно быть что-то еще...

В тот первый раз, в воскресенье вечером, я приехал к Хосе по неотложному вызову. Все выходные его мучили сильнейшие судороги, и накануне вечером я по телефону назначил ему новое лекарство. После было решено, что судороги «взяты под контроль», и больше моего совета не потребовалось. И все же я никак не мог забыть эти часы: в том, как нарисовал их Хосе, была какая-то загадка. Нужно было повидать его еще раз, и я назначил следующую встречу. Я также запросил полную историю болезни

— при первой консультации мне удалось взглянуть только на направление, в котором не было почти никаких сведений о Хосе.

Не зная, зачем его опять тащат к врачу (думаю, ему было все равно), Хосе явился в клинику со скучающей миной, но, увидев меня, весь просиял. Исчезло выражение скуки и равнодушия, которое я запомнил с прошлого раза, и лицо его озарилось внезапной робкой улыбкой — словно приотворилась какая-то наглухо закрытая дверь.

— Я думал о тебе, Хосе, — сказал я ему, протягивая авторучку. — Ну что, порисуем еще?

Даже не понимая слов, он все легко уловил по тону.

Что бы предложить ему нарисовать? Как всегда, у меня под рукой оказался очередной номер журнала «Дороги Аризоны». Я люблю это издание за отличные иллюстрации и обычно ношу с собой, используя при неврологическом

274

тестировании. На этот раз фотография на обложке изображала идиллическую картину — озеро и два человека в каноэ на фоне гор и заката. Хосе начал с переднего плана, с почти черной массы берега, резко контрастировавшей с более светлой водой. Очертив ее точными линиями, он принялся закрашивать центральную часть. Но тут нужна была кисточка, а не ручка.





275

— Давай это пропустим, — посоветовал я. — Начнем прямо с каноэ.

Хосе послушался и быстро, почти без колебаний вывел силуэты людей и корпус. Затем он бросил взгляд на оригинал, отвел глаза, как бы фиксируя изображение в уме, и, косо наклонив ручку, решительно нанес штриховку.

Все это меня опять удивило, причем даже больше, чем в прошлый раз, поскольку речь теперь шла о целой сцене. Поразительна была скорость и абсолютная точность, с которой был сделан рисунок, особенно если учесть, что Хосе лишь раз мельком взглянул на обложку, сразу запомнив все необходимое. Это решительно противоречило предположению о простом копировании (смотритель как-то обозвал Хосе «ксероксом») и говорило об усвоении картинки как целостной сцены, о развитых способностях не механического воспроизведения, а понимания изображенного.

Более того, если присмотреться к рисунку, в нем можно различить драматический элемент, которого нет в оригинале. Крошечные человеческие фигурки увеличены, они живут и действуют, тогда как на фотографии это почти не заметно. Все элементы, при помощи которых Ричард Вольгейм определяет «иконичность», — субъективность взгляда, сознательность, драматизация — присутствуют в рисунке. Способность точной передачи у Хосе, несомненно, сочетается с воображением и оригинальностью. Он рисует не просто каноэ, но свое каноэ, личный взгляд на него.

Еще полистав журнал, я наткнулся на статью о ловле форели. На одной из страниц акварель в мягких тонах изображала ручей среди скал и деревьев. На переднем плане радужная форель, казалось, готова была выпрыгнуть из воды.

— Нарисуй мне вот эту рыбу, — попросил я Хосе.

Он изучил картинку и, улыбнувшись своим мыслям, склонился над листом. С видимым удовольствием, улыбаясь все шире, он принялся рисовать. Через некоторое время заулыбался и я: освоившись в моем присутствии, Хосе вошел во вкус, и передо мной оживала не просто рыба, но рыба с «характером».



276

В оригинале всякая индивидуальность отсутствовала — существо на ней смотрелось двумерным, безжизненным и смахивало скорее на чучело. Нарисованное же Хосе, напротив, было абсолютно трехмерно, объемно и гораздо больше напоминало живую рыбу. Добавились не просто достоверность и жизнь, но что-то еще, что-то крайне выразительное, хотя и не вполне рыбье: зияющая пасть кита, крокодилье рыльце, человеческий глаз с узнаваемо-лукавым выражением. Ясно было, почему Хосе улыбался: рыбина вышла очень смешная — живая форель-прощелыга, сказочный персонаж, что-то вроде Лакея-лягушки из «Алисы в Стране Чудес».

Теперь мне было над чем задуматься. В прошлый раз часы удивили и заинтриговали меня, но никаких выводов я сделать еще не мог. Каноэ показало, что Хосе обладал по меньшей мере мощной зрительной памятью. Рыба же выявила живое и ясное воображение, чувство юмора и особого рода сказочную фантазию. Речь, конечно, не шла о высокой живописи — я имел дело с примитивом, с детским рисунком, — но приметы настоящего искусства были налицо. Открытие это оказалось весьма неожиданным, поскольку воображения и игры никак не станешь ожидать ни от аутиста, ни от идиота, пусть хоть трижды ученого. Так, по крайней мере, принято считать.

277

Много лет назад моя хорошая знакомая, невролог Изабель Рапен, уже принимала Хосе в детской неврологической клинике в связи с упорными судорогами. На основании своего обширного опыта она тогда заключила, что он аутист. Вот что писала доктор Рапен об этом заболевании:



Небольшой процент детей с аутизмом обладает исключительными способностями к расшифровке письменных текстов и погружается в мир гиперлексии или чисел... Поразительное умение некоторых таких пациентов складывать головоломки, разбирать механические игрушки и расшифровывать тексты связаны, возможно, с последствиями чрезмерной концентрации их внимания и познавательной активности на внеречевых пространственно-зрительных задачах в ущерб овладению устной речью; не исключено также, что подобная переориентация вызывается действием компенсаторных механизмов. (См. библиографию, И. Рапен (1982), с. 146—150).

Сходные соображения, особенно в отношении детских рисунков, высказывает Лорна Селфе в своей необыкновенной книге «Надя» (1978). Проанализировав литературу, она заключает, что все дарования аутистов и ученых идиотов наука объясняет только расчетом и безличной памятью и никогда — воображением и другими личностными способностями. Если, в очень редких случаях, такие дети рисуют, считается, что это происходит чисто механически. В литературе описаны лишь «отдельные островки навыков», «изолированные умения». Там нет места для человеческого, не говоря уже о творческом.

Кто же такой Хосе, спрашивал я себя? Что он за существо? Что чувствует, как пришел он к своему теперешнему состоянию? И можно ли хоть как-то ему помочь?

Получив толстую папку с полной историей болезни, я был поражен огромным количеством данных, собранных с того момента, как в возрасте восьми лет с Хосе случился первый приступ его странной болезни. Произошло это так: внезапно у него начался сильный жар, который




Достарыңызбен бөлісу:
1   ...   9   10   11   12   13   14   15   16   17




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет