Высшее образование



Pdf көрінісі
бет3/150
Дата05.09.2023
өлшемі4.17 Mb.
#476602
түріУчебник
1   2   3   4   5   6   7   8   9   ...   150
КНИГА 16 Bolshakov Holod


РАЗДЕЛ I
ХОЛОДИЛЬНАЯ ТЕХНИКА 
ГЛАВА 
ФИЗИЧЕСКАЯ СУЩНОСТЬ И СПОСОБЫ
ПОЛУЧЕНИЯ ИСКУССТВЕННОГО ХОЛОДА 
1.1. 
Физические процессы получения низких температур 
Охлаждение — процесс понижения температуры тела. Для охлаждения нужно иметь 
два тела: охлаждаемое и охлаждающее — источник низкой температуры. Охлаждение 
продолжается, пока между телами происходит теплообмен. Источник низкой температуры 
должен функционировать постоянно, так как охлаждение следует осуществлять непрерывно. 
Это возможно при достаточно большом запасе охлаждающего вещества или если постоянно 
восстанавливается его первоначальное состояние. Последнее широко применяется в 
холодильной технике с использованием различных холодильных машин. 
Различают естественное и искусственное охлаждение. При естественном 
охлаждении теплота от более нагретого тела переходит к менее нагретому (среде). 
Искусственное охлаждение предполагает получение температуры охлаждаемой среды ниже 
температуры окружающей среды. Низкие температуры получают путем физических 
процессов, при протекании которых происходит поглощение извне теплоты без повышения 
температуры тела. 
К основным физическим процессам, сопровождающимся поглощением теплоты, 
относятся фазовые переходы вещества: плавление или таяние при переходе тела из твердого 
состояния в жидкое; испарение или кипение при переходе тела из жидкого состояния в 
парообразное; сублимация или возгонка при переходе тела из твердого состояния 
непосредственно в газообразное. 
Искусственное охлаждение может быть основано и на других физических процессах, 
например адиабатическом дросселировании газа с начальной температурой меньшей, чем 
температура верхней точки инверсии; адиабатическом расширении газа с отдачей полезной 
внешней работы; вихревом эффекте. 
Фазовый переход вещества при плавлении или таянии, испарении или кипении, 
сублимации или возгонке происходит при соответствующих температурах и давлениях с 
поглощением значительного количества теплоты. 
Для получения низких температур (но не ниже 0°С) может быть применен водный 
лед, который в условиях атмосферного давления плавится при 0°С и имеет сравнительно 
большую величину удельной теплоты плавления — 335 кДж/кг. Если давление ниже 
атмосферного, сублимация водного льда происходит при температуре ниже 0°С, что 
используют в сублимационной сушке пищевых продуктов. 
Более низкие температуры плавления можно получить, смешивая лед с некоторыми 
солями, например с хлоридом кальция (рис. 1). 
Рис. 1. Диаграмма состояния системы
хлорид кальция - лед 



Самая низкая температура плавления смеси хлорида кальция со льдом достигается в 
криогидратной (эвтектической) точке, которая равна -55 °С при массовой концентрации 
хлорида кальция ξ = 29,9 %. Источником низкой температуры может служить твердый 
диоксид углерода (сухой лед), имеющий при атмосферном давлении температуру 
сублимации -78,5 °С и удельную теплоту 574 кДж/кг. 
Более широко распространено получение низких температур с использованием 
процесса кипения. С помощью одного вещества можно получить определенный интервал 
температур, поскольку температура его кипения зависит от давления: с уменьшением 
давления температура кипения понижается, и наоборот. С помощью различных веществ 
можно получать низкие температуры в широком диапазоне. Процесс испарения используют, 
например, для понижения температуры воды или влажных поверхностей. 
Адиабатическим дросселированием называют процесс необратимого перехода газа 
(жидкости) с высокого давления на низкое (расширение) при прохождении через сужение 
поперечного сечения (перегородка с отверстием, пористая перегородка и т.д.) без 
совершения внешней работы и отдачи или получения теплоты. 
Процесс протекает быстро, вследствие чего теплообмен с окружающей средой 
практически не происходит и энтальпия (теплосодержание) вещества не изменяется. 
Полезная работа не совершается, так как работа проталкивания переходит в теплоту трения. 
Энтальпия — это функция состояния, равная сумме внутренней и потенциальной энергии 
давления (PV), где Р — давление; V— объем. 
При адиабатическом дросселировании реального вещества в отличие от идеального 
вследствие изменения внутренней энергии производится работа против сил взаимодействия 
молекул. Это приводит к изменению температуры вещества. Изменение температуры 
реального вещества при дросселировании называется эффектом Джоуля —Томсона. 
В зависимости от начального состояния реального вещества перед дросселем 
температура его при дросселировании может уменьшаться, увеличиваться и оставаться без 
изменения. 
Точка, соответствующая начальному состоянию вещества, в которой его 
температура при адиабатическом дросселировании не изменяется и, следовательно
изменяется знак температурного эффекта, называется точкой инверсии, а температура, 
соответствующая этой точке, — температурой инверсии. Точку инверсии можно определить, 
построив в координатах TV (температура — объем вещества) изобару и проведя к ней 
касательную из начала координат. При начальных температурах газа ниже температуры 
инверсии он при дросселировании будет охлаждаться, выше — нагреваться. 
Большинство газов, за исключением водорода и гелия, имеют довольно высокую 
температуру инверсии (600°С и выше), поэтому практически для всех газообразных веществ 
в области, близкой к критической, адиабатическое дросселирование приводит к понижению 
температуры. 
При адиабатическом расширении газа с отдачей полезной внешней работы 
получение низких температур возможно при любом его состоянии, так как температура 
изменяется в сторону понижения. В отличие от адиабатического дросселирования в этом 
случае эффект возможен и для идеального газа, при этом понижение температуры в процессе 
адиабатического расширения при прочих равных условиях бывает более значительным, чем 
при дросселировании. 
Адиабатическое расширение газа в детандере (расширителе) используют для 
получения криогенных температур. 
Вихревой эффект достигается в вихревых трубах при подаче в них по 
тангенциальному вводу сжатого воздуха, имеющего температуру окружающей среды. 
Скорость вращения воздуха в трубе обратно пропорциональна ее радиусу. Центральная часть 
вращающегося потока имеет большую скорость, чем периферийная, вследствие чего 
температура воздуха у стенок трубы выше, а в центре ниже, чем температура подаваемого в 
трубу воздуха. Можно получить потоки воздуха с низкой и высокой температурами, если 

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   150




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет