Программами дисциплины «Безопасность жизнедеятельности»



бет3/37
Дата05.07.2016
өлшемі7.72 Mb.
#180678
түріПрограмма
1   2   3   4   5   6   7   8   9   ...   37
Аксиома 4. Техногенные опасности оказывают негативное воздействие на человека, природную среду и элементы техносферы одновременно.

Человек и окружающая его техносфера, находясь в непрерывном материальном, энергетическом и информационном обмене, образуют постоянно действующую пространственную систему «человек – техносфера» Одновременно существует и система «техносфера – природная среда» (рис. 0.5). Техногенные опасности не действуют избирательно, они негативно воздействуют на все составляющие вышеупомянутых систем одновременно, если последние оказываются в зоне влияния опасностей.



Аксиома 5. Техногенные опасности ухудшают здоровье людей, приводят к травмам, материальным потерям и к деградации природной среды.

Воздействие травмоопасных факторов приводит к травмам или гибели людей, часто сопровождается очаговыми разрушениями природной среды и техносферы. Для воздействия таких факторов характерны значительные материальные потери.

Воздействие вредных факторов, как правило, длительное, оно оказывает негативное влияние на состояние здоровья людей, приводит к профессиональным или региональным заболеваниям. Воздействуя на природную среду, вредные факторы приводят к деградации представителей флоры и фауны, изменяют состав компонент биосферы.

При высоких концентрациях вредных веществ или при высоких потоках энергии вредные факторы по характеру своего воздействия могут приближаться к травмоопасным воздействиям. Так, например, высокие концентрации токсичных веществ в воздухе, воде, пище могут вызывать отравления.



Аксиома 6. Защита от техногенных опасностей достигается совершенствованием источников опасности, увеличением расстояния между источником опасности и объектом защиты, применением защитных мер.

Уменьшить потоки веществ, энергий или информации в зоне деятельности человека можно, уменьшая эти потоки на выходе из источника опасности (или увеличением расстояния от источника до человека). Если это практически неосуществимо, то нужно применять защитные меры: защитную технику, организационные мероприятия и т.п.



Аксиома 7. Компетентность людей в мире опасностей и способах защиты от них – необходимое условие достижения безопасности жизнедеятельности.

Широкая и все нарастающая гамма техногенных опасностей, отсутствие естественных механизмов защиты от них, все это требует приобретения человеком навыков обнаружения опасностей и применения средств защиты. Это достижимо только в результате обучения и приобретения опыта на всех этапах образования и практической деятельности человека. Начальный этап обучения вопросам безопасности жизнедеятельности должен совпадать с периодом дошкольного образования, а конечный – с периодом повышения квалификации и переподготовки кадров во всех сферах экономики.

Из вышесказанного следует, что мир техногенных опасностей вполне познаваем и что у человека есть достаточно средств и способов защиты от техногенных опасностей. Существование техногенных опасностей и их высокая значимость в современном обществе обусловлены недостаточным вниманием человека к проблеме техногенной безопасности, склонностью к риску и пренебрежению опасностью. Во многом это связано с ограниченными знаниями человека о мире опасностей и негативных последствиях их проявления.

Принципиально воздействие вредных техногенных факторов может быть устранено человеком полностью; воздействие техногенных травмоопасных факторов – ограничено допустимым риском за счет совершенствования источников опасностей и применения защитных средств; воздействие естественных опасностей может быть ограничено мерами предупреждения и защиты.



Критерии комфортности и безопасности техносферы. Комфортное состояние жизненного пространства по показателям микроклимата и освещения достигается соблюдением нормативных требований. В качестве критериев комфортности устанавливают значения температуры воздуха в помещениях, его влажности и подвижности (например, ГОСТ 12.1.005–88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны»). Условия комфортности достигаются также соблюдением нормативных требований к естественному и искусственному освещению помещений и территорий (например, СНиП 23–05–95 «Естественное и искусственное освещение»). При этом нормируются значения освещенности и ряд других показателей систем освещения.

Критериями безопасности техносферы являются ограничения, вводимые на концентрации веществ, и потоки энергий в жизненном пространстве.

К
онцентрации регламентируют, исходя из предельно допустимых значений концентраций этих веществ в жизненном пространстве:


где Сi – концентрация i-го вещества в жизненном пространстве; ПДКi – предельно допустимая концентрация i-го вещества в жизненном пространстве; n – число веществ.

Д
ля потоков энергии допустимые значения устанавливаются соотношениями:

где Ii – интенсивность i-го потока энергии; ПДУi – предельно допустимая интенсивность потока энергии.

Конкретные значения ПДК и ПДУ устанавливаются нормативными актами Государственной системы санитарно-эпидемиологического нормирования Российской Федерации. Так, например, применительно к условиям загрязнения производственной и окружающей среды электромагнитными излучениями радиочастотного диапазона действуют Санитарные правила и нормы СанПиН 2.2.4/2.1.8.055–96.

Для оценки загрязнения атмосферного воздуха в населенных пунктах регламентированы класс опасности и допустимые концентрации загрязняющих веществ.

Концентрация каждого вредного вещества в приземном слое не должна превышать максимально разовой предельно допустимой концентрации, т.е. С≤ ПДКmax, при экспозиции не более 20 мин. Если время воздействия вредного вещества превышает 20 мин, то С≤ ПДКсс.

При одновременном присутствии в атмосферном воздухе нескольких вредных веществ, обладающих однонаправленным действием, их концентрации должны удовлетворять условию (0.1) в виде:



ПДК и ПДУ лежат в основе определения предельно допустимых выбросов (сбросов) или предельно допустимых потоков энергии для источников загрязнения среды обитания.

Опираясь на значения ПДК и ПДУ и зная фоновые значения концентраций веществ (Сф) и потоков энергии (Iф) в конкретном жизненном пространстве, можно определить предельно допустимые выбросы (сбросы) примесей (энергии) для конкретных источников загрязнения среды обитания.

Так, например, при определении предельно допустимого выброса (ПДВ) вещества в атмосферный воздух источник загрязнения должен выполнить условие:

где С – концентрация вещества в жизненном пространстве, которая может быть создана источником загрязнения.

По значению концентрации С можно найти ПДВ для промышленного объекта. Требования к расчету содержатся в ГОСТ 17.2.3.02–78 и в ОНД–86.

Таким образом, наличие достаточно жесткой связи между концентрациями примесей в жизненном пространстве и потоком примесей, выделяемых источником загрязнения, позволяет реально управлять ситуацией, связанной с загрязнением жизненного пространства, за счет изменения количества выбрасываемых веществ (энергии).

Предельно допустимые выбросы (сбросы) и предельно допустимые излучения энергии источниками загрязнения среды обитания являются критериями экологичности источника воздействия на среду обитания. Соблюдение этих критериев гарантирует реализацию условий [0.1] – [0.2| и безопасность жизненного пространства.

В тех случаях, когда потоки масс и/или энергий от источника негативного воздействия в среду обитания могут нарастать стремительно и достигать чрезмерно высоких значений (например, при авариях), в качестве критерия безопасности принимают допустимую вероятность (риск) возникновения подобного события.

Риск – вероятность реализации негативного воздействия в зоне пребывания человека.

Вероятность возникновения чрезвычайных ситуаций применительно к техническим объектам и технологиям оценивают на основе статистических данных или теоретических исследований. При использовании статистических данных величину риска определяют по формуле



где R – риск; Nчс – число чрезвычайных событий в год; No – общее число событий в год; Rдоп – допустимый риск.

В настоящее время сложились представления о величинах приемлемого (допустимого) и неприемлемого риска. Неприемлемый риск имеет вероятность реализации негативного воздействия более 10-3, приемлемый – менее 10-6. При значениях риска от 10-3 до 10-6 принято различать переходную область значений риска.

Характерные значения риска естественной и принудительной смерти людей от воздействия условий жизни и деятельности приведены ниже:


Величина риска
10-2

10-3


Риск


Сердечно-сосудистые заболевания Злокачественные опухоли


Зоны


Зона неприемлемого риска

(R>10-3)

10-4


10-5

10-6



Автомобильные аварии Несчастные случаи на производстве

Аварии на железнодорожном, водном и воздушном транспорте; пожары и взрывы

Проживание вблизи ТЭС (при нормальном режиме работы)

Переходная зона значений риска (10-6R<10-3)



10-7

10-8



Все стихийные бедствия

Проживание вблизи АЭС (при нормальном режиме работы)



Зона приемлемого риска

(R<10-6)


Следует заметить, что, несмотря на то, что потоки масс и энергий при авариях технических систем формируются, как правило, спонтанно, на их величину и вероятность возникновения можно оказывать влияние ограничением запасов масс веществ и энергий в одном объекте, контролем за состоянием объекта, введением защитных зон, использованием предохранительных средств и др.



Показатели негативности техносферы. В тех случаях, когда состояние среды обитания не удовлетворяет критериям безопасности (0.1)– [0.3] и комфортности, неизбежно возникают негативные последствия. Для интегральной оценки влияния опасностей на человека и среду обитания используют ряд показателей негативности. К ним относят:

численность пострадавших Ттр от воздействия травмирующих факторов.

Для оценки травматизма в производственных условиях, кроме абсолютных показателей, используют относительные показатели частоты и тяжести травматизма.

Показатель частоты травматизма Кч определяет число несчастных случаев, приходящихся на 1000 работающих за определенный период:

где С – среднесписочное число работающих.

Показатель тяжести травматизма Кт характеризует среднюю длительность нетрудоспособности, приходящуюся на один несчастный случай:

где Д – суммарное число дней нетрудоспособности по всем несчастным случаям.

Для оценки уровня нетрудоспособности вводят показатель нетрудоспособности Кн = Д 1000 /С; нетрудно видеть, что Кн = Кч Кт;

численность пострадавших Тз, получивших профессиональные или региональные заболевания;

показатель сокращения продолжительности жизни (СПЖ) при воздействии вредного фактора или их совокупности. К показателям СПЖ относятся абсолютные значения СПЖ в сутках и относительные показатели СПЖ, определяемые по формуле СПЖ=(П-СПЖ/365)/П, где П –средняя продолжительность жизни, лет;

региональная младенческая смертность определяется числом смертей детей в возрасте до 1 года из 1000 новорожденных;

материальный ущерб. Например, экономические потери от стихийных бедствии в мире составляют:



Год ………………………………………………….

1989

1993

1995

Потери, млрд.долларов…………………………….

7

27

35


Актуальность научных исследований и практической деятельности в области БЖД. Современный человек не всегда пребывает в комфортных или допустимых условиях Опасные и даже чрезвычайно опасные условия жизнедеятельности пока вероятны в условиях техносферы. Отклонение от допустимых условий деятельности всегда сопровождаются воздействием негативных факторов на человека и принуждает его к толерантности, что отрицательно влияет на производительность труда, ухудшает самочувствие, приводит к травмам и заболеваниям, а иногда и к гибели людей

Толерантность – способность организма переносить неблагоприятное влияние того или иного фактора среды.

О влиянии параметров микроклимата на самочувствие человека в состоянии покоя и при выполнении работ средней тяжести свидетельствуют данные табл. 0.3.


Таблица 0.3. Зависимость состояния человека от изменения параметров микроклимата


Состояние

Температура рабочей зоны, С

Влажность, %

Частота пульса, 1/мин

Покой
Работа средней тяжести

27

32

27



32

80

90

80



90

60

110


120

150


С ростом температуры воздуха рабочей зоны сверхоптимального значения (16…18 ° С) снижается относительная работоспособность:


Температура воздуха рабочей зоны, ° С

16…18

25…27

30…32

Относительная работоспособность (выполнение тяжелых работ при относительной влажности 100%)

1,0 0,5 0,2

Неудовлетворительное освещение является одной из причин повышенного утомления, особенно при напряженных зрительных работах. Продолжительная работа при недостаточном освещении приводит к снижению производительности труда, увеличению брака, повышению вероятности нарушения зрения. Е.А. Никитиной показано, что нормализация освещения снижает утомление в 1,5…2 раза, брак в работе на 3…5%, повышает производительность на 1,5…2%.

Воздействие вредных факторов на человека сопровождается ухудшением здоровья, возникновением профессиональных заболеваний, а иногда и сокращением продолжительности жизни.

Экспертная оценка условий труда в экономике России показала, что не соответствуют нормативно допустимым требованиям условия труда по ряду вредных факторов, основными из которых являются:



Вредные факторы


Доля работающих
в неблагоприятных условиях, %


Загазованность, запыленность


3


Неблагоприятные температурные режимы


2,3


Повышенный шум


1,8


Недостаточное освещение


1.8


Повышенная вибрация


0.5

Долю заболевших вибрационной болезнью (%) в зависимости от профессии и стажа работы характеризуют данные Ю.М. Васильева:



Стаж работы, лет


5


10


15


20


25


Слесарь


0


0


4


21


54


Формовщик


0.5


2.3


14


40


72


Обрубщик


0


11


49


86


89

В условиях повышенного шума нарушение слуха зависит от стажа работы и эквивалентного уровня звука:




Эквивалентный уровень звука, дБ А


80


90


90


90


100


100


100


110


110


110


Стаж работы, лет


25


5


15


25


5


15


25


5


15


25


Доля заболевших тугоухостью, %


0


4


14


17


12


37


43


26


71


78

Вследствие воздействия вредных производственных факторов в России в 1992 г получили инвалидность 11 тыс. человек.

Показатели сокращения продолжительности жизни (СПЖ) работающих или проживающих во вредных условиях пока еще редко используются для оценки негативного влияния этих условий. Некоторые их значения уже известны:


Условие обитания

СПЖ, сут

Относительное СПЖ

Курение по 20 сигарет в день в течение 45 лет

2250

0,9

Работа в угольной шахте

1100

0,951

Проживание в неблагоприятных условиях

500

0.978

Загрязнение воздуха в крупных городах

350

0,985

Оценочные данные свидетельствуют о том, что ежегодно в мире на производстве от травмирующих факторов погибают около 200 тыс. человек и получают травмы 120 млн. человек. В нашей стране травматизм с летальным исходом на производстве, автодорогах, в быту непрерывно нарастает. Так, в СССР от принудительной смерти в 1986 г. погибли 247,8, в 1989 г. – 287 тыс. человек. В России в 1992 г. на производстве погибли 8234 человек и получили инвалидность 14 тыс. человек.

Наибольшее число несчастных случаев отмечено на предприятиях и в организациях агропромышленного комплекса, угольной, лесной, бумажной промышленности. Тревогу вызывает рост травматизма с летальным исходом в отраслях, определяющих технический прогресс: машиностроении, радиоэлектронике, станкостроительной, оборонной промышленности. В машиностроении России в 1988 г. травмировано 58,3 тыс. человек, погибло 400 человек.

Негативное влияние региональных загрязнений на здоровье людей, продолжительность их жизни и младенческую смертность проявляется в крупных городах и промышленных центрах. По данным института географии РАН, в неблагоприятных условиях живет пятая часть населения России, в том числе 40% городских жителей. В условиях десятикратного превышения предельно допустимых концентраций (ПДК) токсичных веществ в атмосферном воздухе проживает население более 70 городов с общей численностью более 50 млн. человек.

Практически все города с населением более 1 млн. человек, а также Санкт-Петербург и Москва должны быть отнесены к I или II категории экологического неблагополучия, которые оцениваются как «наиболее высокое» и «очень высокое». В группе городов с численностью населения от 250 до 500 тыс. человек – таких городов лишь 25%. Причем, как правило, это крупные промышленные центры с наиболее опасными отраслями производства – металлургией, химией и нефтехимией.

Чрезвычайно высокая насыщенность крупных городов транспортом вносит очень весомый вклад в их загрязнение. Доля выбросов автотранспорта в загрязнении воздушного бассейна, как правило, составляет 40–50% и более, в Москве приближается к 80%. В связи с бурным развитием автомобилизации в последние годы проблема загрязнения воздушного бассейна обостряется. Большая интенсивность движения транспортных потоков в улично-дорожной сети городов, достигающая 1000–3000 авт./ч и более при несовершенстве и чрезвычайной загруженности улично-дорожной сети, особенно в центральных районах, определяет их повышенное загрязнение основными компонентами автомобильных выбросов – оксидами азота, бензопиреном, оксидом углерода.

С негативным воздействием транспорта связано и шумовое загрязнение городов. Около 40–50% населения крупных городов живут в условиях акустического дискомфорта. На наиболее загруженных городских магистралях, вдоль железных дорог и в зонах влияния аэропортов допустимые уровни шума превышаются на 30–40 дБ, что представляет опасность для здоровья населения.

Процесс урбанизации «наградил» крупные города факторами неблагополучия. Прежде всего, это нарушения микроклиматического режима, изменения режима подземных вод и определяемые этим процессы подтопления городских территорий, загрязнение подземных и поверхностных вод.

В результате значительных антропогенных нагрузок в большинстве городов происходит дальнейшая деградация растительности, что ухудшает состояние городской среды.

Загрязнение среды обитания вредными веществами неуклонно снижает качество потребляемых продуктов питания, воды, воздуха, способствует попаданию в организм человека вредных веществ, что сопровождается ростом числа отравлений и заболеваний, сокращением продолжительности жизни, ростом детской патологии и младенческой смертности.


Таблица 0.4. Отдельные случаи чрезмерно высоких загрязнений
компонент биосферы и их последствия



Место и год

Вредный фактор

Патология, обусловленная загрязнением

Число пострадавших

Лондон, Великобритания, 1952

Сильное загрязнение воздуха SО2 и взвешенными частицами серы

Увеличение числа случаев заболеваний сердца и легких

3 тыс. случаев смерти

Минамата, Япония, 1956

Загрязнение моря и рыбных продуктов ртутью

Неврологическое заболевание, «Болезнь Минамата»

200 случаев тяжелых заболеваний

Бхопал, Индия, 1985

Сильное загрязнение воздуха метилизоцианатом

Острые заболевания легких

2 тыс. случаев смерти, 200 тыс. случаев отравлений

Число отравлений от недоброкачественных пищевых продуктов в СССР в 1988 г. достигло 1,8 млн. случаев, число отравлений с летальным исходом в быту и на производстве – 50 тыс. Причины отравлений различны, но наиболее характерными являются: недоброкачественные пищевые продукты, алкоголь, токсичные вещества и др.



Отравление – результат воздействия химического вещества на человека, приведший к заболеванию или летальному исходу.

Хорошо известны ситуации (табл. 0.4), когда загрязнение атмосферного воздуха или водоемов привело к заболеваниям или смерти значительного числа людей. В кризисных регионах в последние десятилетия появились приоритетные заболевания, о чем свидетельствуют данные табл. 0.5.


Таблица 0.5. Влияние состава атмосферного воздуха на здоровье людей


Группа болезней

Показатели среднемесячной заболеваемости взрослого населения на 1 тыс. человек

средний показатель


г. Липецк


г. Березняки


Злокачественные новообразования

0,25

0,48

0,32

Болезни эндокринной системы

0,26

1,09

0.30

Болезни органов пищеварения

1,9

12,11

6,64

Болезни органов дыхания

14,7


32,29


24,96


Болезни системы кровообращения

3.06

18,85

11,70

Болезни кожи

0,76


2.4


1,3


Болезни органов чувств

1.18


4,1


3,2

Примечание. Превышение ПДК вредных веществ в воздухе г. Липецка достигало 2...6 раз; г.Березники – 2...4 раза.


Резюмируя рассмотренные выше данные, можно утверждать, что в крупных городах, промышленных центрах и вокруг них формируются очаги патологии человеческих популяций. По данным специалистов, здоровье населения ухудшается на 60...70% из-за низкого качества окружающей среды и продуктов питания; при этом ежегодно от экологических заболеваний на планете умирает 1,6 млн. человек.

Качество среды обитания – степень соответствия параметров среды потребностям людей и других живых организмов. Их требования к качеству среды обитания достаточно консервативны, поэтому техносфера по качеству не должна значительно отличаться от природной среды.

По данным ООН (1989 г.), средняя продолжительность жизни на Земле составляет 62 г. (63 –у женщин и 60 –у мужчин). По регионам и отдельным странам средняя продолжительность жизни людей различается весьма существенно:

Япония (1987):

мужчины .................. 75,2

женщины .................. 80,9

США (1990 г.) ................. 75

Африка (1990 г.) ................ 54

СССР, мужчины (1991 г.) ........... 65(63,9)

Северные районы СССР, мужчины (1991) г. . . 40...44*
*Данные М. Фишбаха и А. Френдли (США).
В России в 1995 г. продолжительность жизни женщин составила 71,7, мужчин – 58,3 года.

Младенческая смертность (данные ООН, 1989 г.) в мире составляет в среднем 71 случай на 1000 новорожденных. В развитых странах она существенно ниже и равна, например, в США –10, в скандинавских странах–12...14. В СССР младенческая смертность в 1988 г., по данным А.И. Кондрусева, составляла 24,7, а по данным М. Фешбаха и А. Френдли–40. В Москве в 1994 г. младенческая смертность составила 17,9.

Сокращение продолжительности жизни населения и рост младенческой смертности в последние годы привели к тому, что в 42 регионах России в 1991 г. рождаемость оказалась ниже смертности. По данным Госкомстата РФ в 1992 г. впервые за послевоенные годы произошло абсолютное сокращение численности жителей России: население уменьшилось более чем на 70 тыс. и составило 148,6 млн. человек.

По данным (1997 г.) Госкомитета РФ по статистике чаще всего россияне умирают от болезней системы кровообращения (55%) и от травм и отравлений (13,2%).

Материальный ущерб от региональных загрязнений среды обитания во многих странах также непрерывно нарастает. Так, в США ущерб от загрязнения атмосферы в 1950 г. составил 12,5, в 1968 – 16, а в 1977 –25 млрд. долларов. При этом менялись не только абсолютные показатели ущерба, но и его составляющие. Если в 1950 г. из 12,5 млрд. долларов лишь 1,5 млрд. долларов (12%) приходились на ухудшение здоровья населения, то в 1977 –уже 37%. В СССР в 1990–1991 гг. ежегодный ущерб от региональных загрязнений составлял около 50 млрд. рублей (в ценах 1991 г.)

Определенный вклад в показатели принудительной инвалидности и гибели людей вносят чрезвычайные ситуации. В 1997 г. в России зафиксировано более 150 тыс. чрезвычайных ситуаций, в которых погибли 1651 человек. Постоянно возрастает не только общее число чрезвычайных ситуаций, но и число крупных аварий и катастроф, приводящих к значительным материальным потерям и жертвам. Сегодня характерна тенденция: вероятность каждого отдельного происшествия уменьшается, а масштабы последствий заметно возрастают. Авиационная статистика утверждает: в ходе развития самолетостроения одновременно с уменьшением общего риска перевозок растет масштаб негативных последствий отдельных аварий. За последние 20 лет нашего столетия произошло 56% наиболее крупных происшествий в промышленности и на транспорте, а в 80-е годы – около 33%.

Несмотря на совершенствование технических средств, аварийность и ее последствия нарастают. Наиболее характерными авариями являются: взрывы котлов, газопроводов, горючих пылей, рудничного газа, паров растворителей; обрушения зданий, мостов, строительных площадок. Особую тревогу вызывает возрастающий травматизм при эксплуатации транспортных средств (потери в дорожно-транспортных происшествиях (ДТП) в 1988 г. составили 51,3, в 1990 –уже 63 тыс. человек, причем ранено еще 350 тыс. человек). В Англии из каждых 100 человек, попавших в ДТП, погибал 1; в США –1,5, в ФРГ –2, в СССР –13 человек.

В некоторых видах аварий и катастроф СССР принадлежит печальный приоритет. Так, катастрофа на Чернобыльской АЭС (1986 г.), по неокончательным данным, привела к материальному ущербу в 17 млрд. рублей, при этом погибло 30 и подверглось лучевым заболеваниям примерно 200 человек. Из-за опасности последующих облучений, вызванных воздействием радиоактивного йода и цезия, эвакуировано из опасной зоны около 100 тыс. человек. Взрыв водорода на бериллиевом производстве объединения «Ульбинский металлургический завод» в Усть-Каменогорске в 1990 г. привел к крупному выбросу бериллия. Превышение ПДК достигало 60...890 раз.

Для многих стран мира стало типичным аварийное загрязнение среды обитания токсичными химическими веществами. Так, в США за период 1980...1984 гг. произошло 295 крупных аварийных выбросов в природную среду, повлекших за собой эвакуацию населения. В это число входят 153 случая аварий при транспортировании химических соединений, 121 авария на промышленных объектах, семь выбросов с мест захоронения и свалок токсичных отходов. Аналогичная ситуация и в СССР: только в 1990 г. произошли выбросы бериллия в Усть-Каменогорске, пиробензола – в Вологодской области, фенола – в Уфе.

Ряд чрезвычайных экологических ситуаций создают военные ведомства (Семипалатинский полигон на о. Новая Земля, в районе Челябинска и др.). Как правило, в зонах испытательных полигонов возникает и длительно действует комплекс повышенных негативных факторов: повышенный радиационный и химический фон, загрязнения токсичными веществами поверхностных и грунтовых вод, почвы и т.п.

На пожарах в СССР в 1988 г. погибло 8,5 тыс. человек, получили травмы более 10 тыс. человек. Основная часть людей гибнет на пожарах (особенно крупных) вследствие отсутствия или загромождения путей эвакуации, из-за удушья, поскольку при строительстве все еще применяют быстрогорящие материалы, выделяющие при горении токсичные соединения. Каждый третий пожар возникает из-за неисправности бытовых приборов. При сгорании телевизора в помещение выделяются оксид углерода, стирол, формальгид, фенол. В 1988 г. по этой причине погибли 217 человек.

Чтобы правильно оценивать масштабность и реальную опасность воздействия негативных факторов в различных системах «человек – среда обитания», обратимся к данным табл. 0.6.


Таблица 0.6. Число погибших от воздействия негативных факторов в 1990 г., человек


Число негативных факторов

В мире

В Российской Федерации

Промышленное производство

Региональное загрязнение воды, воздуха, продуктов питания

Стихийные явления

Чрезвычайные ситуации



200 000

1 600 000


140 000



8 234

44800


(расчетные данные)

1 224 (1993 г.)



Качественное изменение значимости негативных факторов в XX в. показано на рис. 0.6. Производственные негативные факторы (кривая 2) заявили о себе еще в XIX в., в нашем столетии достигнута их стабилизация. В ряде стран производственный травматизм с летальным исходом в последние годы снижается, что является результатом эффективности принимаемых мер защиты.

Оценивая влияние негативных воздействий техносферы на человека и природную среду, не следует забывать, что ряд негативных факторов не ограничивает свое влияние только первичным воздействием. Некоторые факторы способны вызывать вторичные негативные явления в окружающей среде. К ним, в первую очередь, относят:

– разрушение озонового слоя;

– образование фотохимического смога;

– выпадение кислотных дождей;

– возникновение парникового эффекта.





Рис. 0.6. Тенденции изменения в XX в. численности погибших вследствие:

1 – стихийных бедствий; 2 – воздействия производственных негативных факторов; 3 – загрязнения техносферы и биосферы; 4–чрезвычайных ситуаций техногенного происхождения





Начиная с середины XX столетия резко возросло воздействие на людей региональных негативных факторов крупных городов и промышленных центров. Ряд негативных воздействий имеют уже глобальное влияние. Нарастает влияние и негативных факторов техногенного происхождения, действующих в чрезвычайных ситуациях.

Основы проектирования техносферы по условиям безопасности жизнедеятельности. Это достигается обеспечением комфорта в зонах жизнедеятельности; правильным расположением источников опасностей и зон пребывания человека; сокращением размеров опасных зон; применением экобиозащитной техники и средств индивидуальной защиты.

Комфортность техносферы. Наилучшие показатели работоспособности и отдыха достигаются при комфортном состоянии среды обитания и при рациональных режимах труда и отдыха.

Комфорт – оптимальное сочетание параметров микроклимата, удобств, благоустроенности и уюта в зонах деятельности и отдыха человека.

Комфортные и допустимые параметры воздушной среды в рабочих зонах регламентируются государственными стандартами и обеспечиваются в основном применением систем кондиционирования, вентиляции и отопления. Нормативные (оптимальные, допустимые) значения параметров микроклимата в рабочих зонах производственных помещениях зависят от категории выполняемых работ, периода года и некоторых других показателей (ГОСТ 12.1.005–88).

Важную роль в достижении эффективной деятельности играет искусственное освещение. Рационально выполненное освещение оказывает психофизиологическое воздействие на человека, способствует повышению эффективности деятельности, снижает напряженность органов зрения, повышает безопасность деятельности.

Эффективность деятельности человека в значительной степени зависит от организации рабочего места, в том числе от:

– правильного расположения и компоновки рабочего места;

– обеспечения удобной позы и свободы движений;

– использования оборудования, отвечающего требованиям эргономики.

Важное значение при достижении максимально эффективной деятельности играют режимы труда и отдыха. Сохранение высокой работоспособности достигается правильным чередованием режимов труда и отдыха.



Опасные зоны и зоны пребывания человека. Вредные и травмирующие воздействия, генерируемые техническими системами, образуют в жизненном пространстве техносферы опасные зоны, где не реализуются условия (0.1)–(0.3). Для этих зон характерны соотношения: С>ПДК, I > ПДУи R > Rдоп.

Одновременно с опасными зонами в жизненном пространстве существуют зоны деятельности (пребывания) человека. В быту – зона жилища, городская среда. В условиях производства – рабочая зона, рабочее место.







Рис. 0.7. Варианты взаимного положения зоны опасности (О) и зоны пребывания человека (Ч):

I – безопасная ситуация; II–ситуация кратковременной или локальной опасности; III– опасная ситуация; IV–условная безопасная ситуация


Рабочая зона – пространство высотой 2 м над уровнем пола или площадки, на которой расположено рабочее место.

Рабочее место – зона постоянной или временной (более 50% или более 2 ч непрерывно) деятельности работающего.

Варьируя взаимным расположением опасных зон и зон пребывания человека в пространстве, можно существенно влиять на решение задач по обеспечению безопасности жизнедеятельности. Различают четыре принципиальных варианта взаимного расположения зон опасности и зоны пребывания человека (рис. 0.7).



Защита расстоянием. Полную безопасность гарантирует только I вариант взаимного расположения зон пребывания и действия негативных факторов – защита расстоянием, реализуемый при дистанционном управлении, наблюдении и т.п. Во II варианте негативное воздействие существует лишь в совмещенной части областей: если человек в этой части находится кратковременно (осмотр, мелкий ремонт и т.п.), то и негативное воздействие возможно только в этот период времени, в III варианте – негативное воздействие может быть реализовано в любой момент, а в IV варианте – только при нарушении функциональной целостности средств защиты зоны пребывания человека (как правило, средств индивидуальной защиты – (СИЗ), кабин наблюдения и т.п.).

Радикальным способом обеспечения безопасности является защита расстоянием –разведение в пространстве опасных зон и зон пребывания человека. Разводить опасные зоны и зоны пребывания человека можно не только в пространстве, но и во времени, реализуя чередование периодов действия опасностей и периодов наблюдения за состоянием технических систем.

К сожалению, защита расстоянием не всегда возможна на практике. Часто приходится решать вопросы безопасности при иных (//–IV) вариантах взаимного расположения опасных зон и зон пребывания (см. рис. 0.7).

Для обеспечения безопасности человека в этих случаях используют:

– совершенствование источников опасности с целью максимального снижения значимости генерируемых ими опасностей. Это не только снижает уровни опасностей, но и, как правило, сокращает размеры опасной зоны;

– введение защитных средств (экобиозащитная техника) для изоляции зоны пребывания человека от негативных воздействий;

– применение средств индивидуальной защиты человека от опасностей.

Сокращение размеров опасных зон. При воздействии вредных факторов сокращение размеров зон должно достигаться прежде всего совершенствованием технических систем, приводящим к уменьшению выделяемых ими отходов. Для ограничения вредного воздействия на человека и среду обитания к технической системе предъявляются требования по величине выделяемых в среду токсичных веществ в виде предельно допустимых выбросов или сбросов (ПДВ или ПДС), а также по величине энергетических загрязнений в виде предельно допустимых излучений в среду обитания. Значения ПДВ и ПДС определяют расчетом, исходя из значений ПДК в зонах пребывания человека. Величины предельных излучений находят, исходя из предельно допустимых уровней (ПДУ) воздействия загрязнения и расстояния между источником излучения и зоной пребывания человека.

Уменьшение отходов систем при их эксплуатациирадикальный путь к снижению воздействия вредных факторов.

Наибольшие трудности в ограничении размеров зон воздействия травмирующих факторов возникают при эксплуатации технических систем повышенной энергоемкости (хранилищ углеводородов, химических производств, АЭС и т.п.). При авариях на таких объектах травмоопасные зоны охватывают, как правило, не только производственные зоны, но и зоны пребывания населения. Основными направлениями в ограничении травмоопасности таких объектов являются:

– совершенствование систем безопасности объектов;

– дистанцирование промышленных и селитебных зон;

– активное использование защитных систем и устройств;

– непрерывный контроль источников опасности;

– достижение высокого профессионализма операторов технических систем.

Совершенство технической системы по травмоопасности оценивают величиной допустимого риска, который констатирует факт постоянного присутствия потенциального травмоопасного воздействия и определяет его нормативный уровень.

При создании технических систем оценка риска достигается анализом ее структурного строения, учета вероятности отказа отдельных ее элементов и возможных несанкционированных действий оператора при обслуживании технической системы или управления ею. Глубина анализа причин отказов технических систем и возможных ошибочных действий операторов способствует повышению безопасности (снижению риска) путем внедрения в техническую систему защитных средств и повышения требований к подготовке операторов.

Риском можно управлять. Европейское Сообщество в 1983 г. после крупной аварии в Севезо (Италия) приняло специальную «Директиву по Севезо», согласно которой все новые объекты должны иметь точное обоснование их безопасности. После 1983 г. число аварий в европейской промышленности стало резко снижаться:


Год …………………….. 1982 1983 1986 1988

Число аварий ………….. 350 400 160 50



Снижение травмоопасности технических систем достигается их совершенствованием с целью реализации допустимого риска.

Экобиозащитная техника. Если совершенствованием технических систем не удается обеспечить предельно допустимые воздействия на человека в зоне его пребывания, то необходимо применять экобиозащитную технику (пылеуловители, водоочистные устройства, экраны и др.). Для уменьшения зон действия травмирующих факторов технических систем применяют экобиозащитную технику в виде различных ограждений, защитных боксов и т.п. Принципиальная схема использования экобиозащитной техники показана на рис. 0.8. В тех случаях, когда возможности экобиозащитной техники (1, 2, 3) коллективного использования ограничены и не обеспечивают значений ПДК и ПДУ в зонах пребывания людей, для защиты применяют средства индивидуальной защиты.

Средства индивидуальный защиты. На ряде предприятий существуют такие виды работ или условия труда, при которых работающий может получить травму или иное воздействие, опасное для здоровья. Еще более опасные условия для людей могут возникнуть при авариях и при ликвидации их последствий. В этих случаях для защиты человека необходимо применять средства индивидуальной защиты. Их использование должно обеспечивать максимальную безопасность, а неудобства, связанные с их применением, должны быть сведены к минимуму. Номенклатура СИЗ включает обширный перечень средств, применяемых в производственных условиях (СИЗ повседневного использования), а также средств, используемых в чрезвычайных ситуациях (СИЗ кратковременного использования). В последних случаях применяют преимущественно изолирующие средства индивидуальной защиты (ИСИЗ).

Рис. 0.8. Варианты использования экобиозащитной техники для снижения вредных воздействий:

1–устройства, входящие в состав источника воздействий; 2–устройства, устанавливаемые между источником и зоной деятельности; 3–устройства для защиты зоны деятельности; 4–средства индивидуальной защиты человека


Роль инженера в обеспечении безопасности жизнедеятельности. Практическое обеспечение безопасности жизнедеятельности при проведении технологических процессов и эксплуатации технических систем во многом определяется решениями и действиями инженеров и техников. Руководитель производственного процесса обязан:

– обеспечивать оптимальные (допустимые) условия деятельности на рабочих местах подчиненных ему сотрудников;

– идентифицировать травмирующие и вредные факторы, сопутствующие реализации производственного процесса;

–обеспечивать применение и правильную эксплуатацию средств защиты работающих и окружающей среды;

– постоянно (периодически) осуществлять контроль условий деятельности, уровня воздействия травмирующих и вредных факторов на работающих;

– организовывать инструктаж или обучение работающих безопасным приемам деятельности;

– лично соблюдать правила безопасности и контролировать их соблюдение подчиненными;

– при возникновении аварий организовывать спасение людей, локализацию огня, воздействия электрического тока, химических и других опасных воздействий.

Разработчик технических средств и технологических процессов на этапе проектирования и подготовки производства обязан:

– идентифицировать травмирующие и вредные факторы, возникновение которых потенциально возможно при эксплуатации разрабатываемых технических систем и реализации производственных процессов в штатных и аварийных режимах работы;

– применять в технических системах и производственных процессах экобиозащитную технику с целью снижения вредных воздействий до допустимых значений;

– определить риск возникновения травмоопасного воздействия в системе и снизить его значение до допустимого уровня применением защитных устройств и других мероприятий;

– обеспечить конструктивными решениями непрерывный (периодический) контроль за состоянием защитных средств и параметров или процесса, влияющих на уровень их безопасности и экологичности;

– сформулировать требования к уровню профессиональной подготовки оператора технических систем или технологических процессов;

– при выборе технического решения обеспечить малоотходность производства и максимальную эффективность использования энергоресурсов.

Задачи специалиста в области безопасности жизнедеятельности сводятся к следующему;

– контроль и поддержание допустимых условий (параметры микроклимата, освещение и др.) жизнедеятельности человека в техносфере;

– идентификация опасностей, генерируемых различными источниками в техносферу;

– определение допустимых негативных воздействий производств и технических систем на техносферу;

– разработка и применение экобиозащитной техники для создания допустимых условий жизнедеятельности человека и его защиты от опасностей;

– обучение работающих и населения основам безопасности жизнедеятельности в техносфере.

Образование в области безопасности жизнедеятельности. Основы образования в области безопасности в нашей стране были положены в 30-х годах XX столетия, а подготовка специалистов в области БЖД начата недавно, лишь в 90-х годы.

Образование – процесс и результат усвоения систематизированных знаний, умений и навыков. Основной путь получения образования – обучение в учебных заведениях.

Сегодня образовательная структура выглядит следующим образом.



Первый общеобразовательный уровень, которым должен владеть каждый, обязан обеспечить подготовку на уровне знания и понимания проблем БЖД, он должен вооружить человека навыками и приемами личной и коллективной безопасности. Реализуется этот уровень подготовки введением в средней школе дисциплины «Основы БЖД».

Второй уровень образования по БЖД–подготовка инженерно-технических работников (ИТР) всех специальностей, поскольку создаваемая и эксплуатируемая техника и технология являются основными источниками травмирующих и вредных факторов, действующих в среде обитания. Разрабатывая новую технику, инженер обязан обеспечить не только ее функциональное совершенство, технологичность и приемлемые экономические показатели, но и достичь требуемых уровней ее экологичности и безопасности в техносфере. С этой целью инженер при проектировании или перед эксплуатацией техники должен выявить все негативные факторы, установить их значимость, разработать и применить в конструкции машин средства снижения негативных факторов до допустимых значений, а также средства предупреждения аварий и катастроф.

Поскольку повышение экологичности современных технических систем часто достигается применениями экобиозащитной техники, ИТР обязан знать, уметь применять и создавать новые средства защиты, особенно в области своей профессиональной деятельности. Вместе с тем ИТР обязан понимать, что в области охраны природы наибольшим защитным эффектом обладают малоотходные технологии и производственные циклы, включающие получение и переработку сырья, выпуск продукции, утилизацию и захоронение отходов, а в области безопасности – системы с высокой надежностью, безлюдные технологии и системы с дистанционным управлением.

Решение задач БЖД при проектировании и эксплуатации технических систем невозможно без знания инженером уровней допустимых воздействий негативных факторов на человека и природную среду, а также знания негативных последствий, возникающих при нарушении этих нормативных требований.

Рассмотренным выше блоком знаний в области БЖД должны владеть специалисты всех отраслей экономики, но прежде всего специалисты в области энергетики, транспорта, металлургии, химии и ряда других отраслей промышленного производства. Обучения этого уровня в вузах целесообразно вести на основе дисциплины «Безопасность жизнедеятельности» с изучением отдельных вопросов безопасности труда в базовых курсах специальности или специализации.



Третий уровень образования необходим для подготовки инженеров по безопасности жизнедеятельности – специалистов, профессионально работающих в области защиты человека и природной среды. К ним относятся прежде всего специалисты по контролю безопасности техносферы и экологичности технических объектов, мониторингу окружающей среды в регионах, эксперты по оценке безопасности техносферы и экологичности технических объектов, проектов и планов; инженеры-разработчики экобиозащитных систем и защитных средств. Основной задачей деятельности таких специалистов должна быть комплексная оценка технических систем и производств с позиций БЖД, разработка новых средств и систем экобиозащиты, управление в области БЖД на промышленном и региональном уровнях.

Для реализации этого уровня образования в нашей стране с 1994 г. введены новые специальности: 330100 «Безопасность жизнедеятельности», 330200 «Инженерная защита окружающей среды» (по отраслям), 330500 «Безопасность технологических процессов и производств» (по отраслям), 330600 «Защита в чрезвычайных ситуациях», а также направление 553500 «Защита окружающей среды». Вузы активно откликнулись на это решение. Уже открыта подготовка кадров более чем в 60 вузах, в том числе в Москве (МГТУ, МГАТУ, МИСиС, АГЗ, ГАНГ и др.), Санкт-Петербурге (С.-ПГТУ и др.), на Урале (УГТУ и др.) и в других регионах России. Государственные требования к минимуму учебных дисциплин по направлению 553500 и специальностям группы 330000 определены соответствующими государственными стандартами.



Четвертый уровень образования – внедрение как общего курса БЖД, так и специализированных курсов по безопасности и экологичности в системах МИПК и ФПК.

Перспективы развития безопасности жизнедеятельности. Негативное воздействие опасностей на человека в наибольшей степени проявляется в крупных городах и промышленных центрах. Картографическое описание патологии человека в регионах – одна из важнейших задач медицины в ближайшем будущем. Данные о характере заболевания населения будут одним из основных показателей для принятия решений в области безопасности жизнедеятельности.

Здоровье человека и информационная стратегия. Для достоверной оценки показателей негативности техносферы необходимо ясно представлять истинное состояние здоровья работающих на промышленном предприятии и различных групп населения города и региона. Оценка состояния здоровья, базирующая на данных обращаемости населения в медицинские учреждения, недостоверна и существенно отличается в лучшую сторону от реальной, получаемой при активной выявляемости заболеваний. Для иллюстрации сказанного достаточно сопоставить следующие цифры: у нас в стране ежегодно диагностируется около 7 тыс. случаев профессиональных заболеваний, а в США – более 450 тыс.

Данные свидетельствуют о низком уровне профилактических осмотров, проводимых сегодня на промышленных предприятиях. Что касается регулярных профилактических осмотров городского населения, то они практически отсутствуют.

Важнейшую роль в деле сохранения здоровья населения в ближайшем будущем будет играть информация об опасностях среды обитания. Такая информация должна содержать значения и прогноз величины критериев безопасности и показателей негативности среды обитания как в производственных помещениях, так и в регионах техносферы. Аналог подобной информации – прогнозы метеослужб. Наличие информации о среде обитания позволит населению рационально выбирать места деятельности и проживания, рационально пользоваться методами и средствами защиты от опасностей.

Задача сложная, но определенные успехи в этом направлении имеются: публикации (правда, нерегулярные) в газетах о состоянии окружающей среды; действующие в ряде городов (Вена и др.) специальные табло с указанием концентраций некоторых примесей в атмосферном воздухе и т.п.

Воздействие опасностей в условиях производства, города, жилища обычно происходит длительно (в течение суток, рабочего дня и т.п.), поэтому необходим постоянный контроль за параметрами выбросов, стоков и т.п., а также мониторинг состояния среды обитания по контролируемым вредным факторам.

Мониторинг – слежение за состоянием среды обитания и предупреждение о создающихся негативных ситуациях.

Рис. 0.9. Карта уровней концентраций токсичных веществ Волгоградского проспекта г. Москвы


Информационная стратегия государства по укреплению здоровья и профилактике болезней населения должна включать:

– регулярную информацию об опасностях среды обитания;

– регулярную информацию о токсикологических выбросах производства в окружающую среду;

– регулярную информацию работающих о негативных факторах производства и о их влиянии на здоровье;

– информацию о состоянии здоровья населения региона и профессиональных заболеваниях;

– информацию о методах и средствах защиты от опасностей;

– информацию об ответственности руководителей предприятий и служб безопасности за безопасное состояние среды обитания.

Внедрение указанных походов является чрезвычайно актуальным и своевременным. В настоящее время очевидно, что человеческое здоровье занимает одно из ведущих мест в системе социальных ценностей и должно приоритетно рассматриваться в ряду других ресурсов государства, таких как леса, почва, воды, полезные ископаемые и т.п.



Научные, технические и организационные задачи. К перспективным научно-техническим задачам в области БЖД относятся:

–описание жизненного пространства в критериях безопасности путем составления карт опасностей (карты концентраций токсичных веществ (рис. 0.9.), карты полей энергетического воздействия, карты полей риска);

– разработка требований экологичности к техническим системам с учетом состояния техносферы в зоне использования технических систем;

–совершенствование и разработка новых методов и способов обращения с отходами всех видов (выбросы, сбросы, энергетические поля и излучения), поступающими в техносферу;

– совершенствование и разработка новых средств экобиозащиты от опасностей.

К организационно-техническим задачам в области БЖД относятся:

– совершенствование экспертизы проектов по критериям безопасности и экологичности;

– совершенствование контроля показателей экологичности технических систем и безопасности среды обитания;

– оптимизация системы управления безопасностью жизнедеятельности на региональном и государственном уровнях.

Как наука БЖД находится в стадии своего формирования. Несомненно, что она должна опираться на научные достижения и практические разработки в области охраны труда, окружающей среды и защиты в чрезвычайных ситуациях, на достижения в профилактической медицине, биологии, основываться на законах и подзаконных актах.

Общее направление деятельности в области БЖД должно соответствовать программе действий «Повестка дня на 21 век» (Материалы Всемирного форума в Рио-де-Жанейро, 1992 г.), положившей основы дальнейшего развития Мира. В программе указано, что единственный способ обеспечить безопасное будущее–это комплексно решить проблемы развития экономики и сохранения окружающей среды. Основу решений должно составить устойчивое развитие всех процессов, всемирная экономия ресурсов, безопасные и экологичные технологии, просвещение и подготовка кадров в области безопасного взаимодействия с окружающей средой. Особое внимание в программе предлагается уделить подготовке будущих руководителей всех сфер деятельности.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   37




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет