Разложение суммы квадратов в однофакторном да


Теоретические критерии планирования эксперимента



бет4/24
Дата13.07.2024
өлшемі2.64 Mb.
#502950
1   2   3   4   5   6   7   8   9   ...   24
Ответы по билетам

Теоретические критерии планирования эксперимента.

Все многообразие критериев планирования эксперимента можно разбить на две большие группы. Первую составляют критерии, непосредственно учитывающие точностные свойства получаемых оценок. Среди них можно выделить критерии, связанные с точностью нахождения коэффициентов регрессии (критерии A- и D-оптимальности), и критерии, требующие максимальной точности оценки выходной переменной (критерий G-оптимальности).
Смысл перечисленных критериев можно пояснить, используя понятие эллипсоида рассеяния случайного вектора. Для случайного вектора а размерности , ковариационная матрица которого есть cov a, эллипсоид рассеяния задается выражением ,
описывающим эллипсоид в -мерном пространстве с центром в точке Ма. Эта геометрическая фигура имеет такие размеры, что ковариационная матрица случайного вектора, равномерно распределенного в пределах эллипсоида, совпадает с матрицей cov a. Следовательно, чем больше рассеяние вектора относительно его математического ожидания, тем большие размеры имеет эллипсоид рассеяния.
Критерий А-оптимальности Поскольку точностной характеристикой вектора коэффициентов регрессии является ковариационная матрица, а критерии планирования желательно иметь в скалярной форме, то необходима некоторая свертка ковариационной матрицы. Критерий A-оптимальности в качестве такой свертки использует след матрицы . Поскольку диагональные элементы матрицы С пропорциональны дисперсии оценок коэффициентов регрессии, то при минимизации следа матрицы С минимизируется, по сути дела, суммарная либо средняя дисперсия оценок коэффициентов модели: .
Известно, что сумма диагональных элементов матрицы равняется сумме её собственных значений. Поскольку квадраты длины осей эллипсоида рассеяния пропорциональны собственным значениям ковариационной матрицы, то критерий A-оптимальности требует минимизации диагонали параллелепипеда, описанного у эллипсоида рассеяния.
Критерий D-оптимальности Критерий D-оптимальности требует такого расположения точек в области планирования , при котором определитель матрицы имеет минимальную величину. Иными словами, план D-оптимален, если .
Известно, что объем эллипсоида рассеяния пропорционален корню из величины определителя ковариационной матрицы, т.е. . С учетом (3.8) V .
Чем меньше величина определителя, тем меньше, как правило, разброс оценок коэффициентов относительно их математических ожиданий. Исключением является случай, когда эллипсоид рассеяния имеет сильно вытянутую форму.
Критерий G-оптимальности План G-оптимален, если он обеспечивает наименьшую величину максимальной дисперсии оценки зависимой переменной: .





  1. Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   24




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет