Разложение суммы квадратов в однофакторном да


Поиск с использованием чисел Фибоначчи



бет9/24
Дата13.07.2024
өлшемі2.64 Mb.
#502950
1   ...   5   6   7   8   9   10   11   12   ...   24
Ответы по билетам

Поиск с использованием чисел Фибоначчи Числа Фибоначчи задаются по следующим правилам:
,
На первом шаге ставятся два эксперимента в точках x1=a+(b-a)q и x2=b-(b-a)q при q=FN-2/FN , (6.10)
где N выбирается заранее.
При максимальное значение следует искать на отрезке , при – на отрезке . На последующих шагах ставят по одному эксперименту, меняя q по закону , где j – номер шага (j=2,3,…).
Легко показать, опираясь на определение чисел Фибоначчи, что одна из координат, подсчитанная по формулам, аналогичным (6.10), будет совпадать с одной из предыдущих точек. Далее происходит сравнение значений функций в этих двух точках и процесс повторяется. Мера эффективности метода составляет .
Так, при N=10 =144, а значит с помощью 11 экспериментов можно локализовать экстремум в области, не превышающей 1% размера начальной области поиска. Этот метод существенно эффективнее предыдущего. К его недостатку можно отнести необходимость заранее задавать число экспериментов.
Метод золотого сечения Этот метод базируется на методе Фибоначчи и не требует предварительного задания числа экспериментов. В методе золотого сечения вместо величины на каждом шаге используется ее предельное значение при : .
Мера эффективности метода .


11. Многомерные методы экспериментальной оптимизации.
Для поиска экстремума функции многих переменных применяется ряд методов, среди которых отметим:
метод покоординатной оптимизации; метод Бокса − Уилсона; последовательный симплексный метод.
Метод покоординатной оптимизации Метод покоординатной оптимизации, называемый также методом Гаусса–Зейделя, сводит многомерную оптимизацию к последовательному применению одномерной к сечениям функции. Для этого фиксируют значения всех переменных, кроме одной, к которой применяется один из методов одномерной оптимизации. Затем начинают поиск по второй переменной, фиксируя первую на значении, обеспечившем экстремум, и т. д. После того как список переменных исчерпался, возвращаются к первой переменной, и так до тех пор, пока значение отклика возрастает (убывает). Метод отличается простотой, однако для функций овражистого типа, для которых линии равного уровня сильно вытянуты в направлении, не параллельном осям координат, поиск может продолжаться довольно долго. Метод Бокса−Уилсона На основе малой серии опытов строится линейное описание поверхности отклика в окрестности начальной точки. В центре этой локальной области определяется значение градиента, после чего начинаются опыты в направлении градиента. Бокс и Уилсон предложили использовать дробные факторные планы для поиска линейной модели. Метод состоит из последовательности циклов, каждый из которых содержит два шага.
1. Построение линейной модели в окрестности некоторой начальной точки с использованием подходящего факторного плана. Окрестность начальной точки, определяемая интервалами варьирования переменных, должна быть не слишком малой, чтобы можно было выявить линейные эффекты на фоне случайных возмущений, и не настолько большой, чтобы обеспечить адекватность линейного приближения. Соотношение между интервалами варьирования по отдельным переменным должно быть таким, чтобы величины коэффициентов регрессии в случае их значимости имели бы одинаковый порядок. В случае адекватности линейной модели коэффициенты регрессии совпадают с компонентами градиента, т.е. , где i, j,…,k – направляющие векторы осей координат. Обычно переходят к нормированному градиенту делением его компонент на норму либо просто на . Компоненты нормированного градиента обозначим .
2. Пошаговое увеличение величины целевой функции (движение в направлении градиента). Координаты точки наблюдения на -м шаге при движении в направлении градиента определяются по формуле: , где ≥1 – параметр, позволяющий управлять величиной шага, а следовательно, скоростью движения. Чем ближе исследователь подходит к стационарной области, тем меньше . Движение в направлении градиента продолжается до тех пор, пока возрастают значения выходной переменной. В противном случае вновь реализуют факторный план, находят новое линейное приближение и цикл повторяется снова. Если же модель оказывается неадекватной, то это означает, что исследователь либо достиг стационарной области, либо необходимо линейную модель дополнить взаимодействиями. В стационарной области метод Бокса−Уилсона неработоспособен, здесь необходимо переходить к квадратичным моделям.
Геометрическая интерпретация метода приведена на рис.4. Здесь поверхность отклика задается линиями уровня.



Достарыңызбен бөлісу:
1   ...   5   6   7   8   9   10   11   12   ...   24




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет