Реферат по математическим основам теории систем на тему Линейное программирование Группа: пс-263



бет5/6
Дата03.12.2022
өлшемі5.42 Mb.
#466374
түріРеферат
1   2   3   4   5   6
Линейное программирование

4.2. Симплекс-метод

Общую идею симплекс-метода проиллюстрируем на примере модели для задачи фирмы Reddy Mikks. На исходная точка алгоритма – начало координат (т. A) – начальное решение. От исходной точки осуществляется переход к некоторой смежной угловой точке (т. B или т. F). Её выбор зависит от коэффициентов целевой функции. Т.к. коэффициент при x­E больше коэффициента при xI, а целевая функция подлежит максимизации, требуемое направление перехода соответствует увеличению x­E (т. B). Далее указанный процесс повторяется для выяснения, существует ли другая экстремальная точка, соответствующая лучшему допустимому решению.


Правила выбора экстремальной точки:

  1. Каждая последующая угловая точка должна быть смежной с предыдущей.

  2. Обратный переход к предшествующей экстремальной точке не может производиться.

Чтобы описать рассмотренные процедуры формальными способами, необходимо определить пространство решений и угловые точки алгебраически. Требуемые соотношения устанавливаются по таблице:



Геометрическое определение (графический метод)

Алгебраическое определение (симплекс-метод)

Пространство решений

Ограничения модели стандартной формы

Угловые точки

Базисные решения задачи в стандартном виде

4.2.1. Представление пространства решений стандартной задачи ЛП.


Модель:
максимизировать целевую функцию

при ограничениях

На – пространство решений. Каждую точку можно определить с помощью

Для идентификации нужной точки воспользуемся тем, что при ограничения модели эквивалентны равенствам, которые представляются соответствующими рёбрами пространства решений.
Анализируя , заметим, что

можно упорядочить, исходя из того, какое значение (нулевое или ненулевое) имеет данная переменная в экстремальной точке.



Экстр.

переменные

точка

нулевые

ненулевые

A





B





C





D





E





F





Из таблицы выделим закономерности:



  1. Стандартная модель содержит четыре уравнения и шесть неизвестных, поэтому в каждой из экстремальных точек (6–4) переменные должны иметь нулевые значения.

  2. Смежные экстремальные точки отличаются только одной переменной в каждой группе (нулевых и ненулевых переменных).

Если линейная модель стандартной формы содержит уравнений и
неизвестных, то все допустимые экстремальные точки определяются как все однозначные неотрицательные решения системы уравнений, в которых m-n переменных равны нулю. Однозначные решения такой системы – базисные решения. Если они удовлетворяют требованию неотрицательности правых частей, то это – допустимое базисное решение. Переменные, равные нулю – небазисные, остальные – базисные. Каждую следующую экстремальную точку можно определить определить путём замены одной из текущих небазисных переменных текущей базисной переменной. В нашем примере при переходе из т. A в т. B необходимо увеличивать небазисную переменную от исходного нулевого значения до значения, соответствующего т. B. В т. B s2 обращается в нуль (становится небазисной). Т.о., происходит взаимообмен x­E и s2 между небазисными и базисными переменными.
Включаемая переменная – небазисная в данный момент переменная, которая будет включена в множество базисных переменных на следующей итерации. Исключаемая переменная – базисная в данный момент переменная, которая на следующей итерации подлежит исключению из множества базисных переменных.




Достарыңызбен бөлісу:
1   2   3   4   5   6




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет