С. И. Георгиевского кафедра медицинской биологии К. Л. Лазарев, М. Ф. Ромашова, Н. С. Прохорова Молекулярно-клеточный уровень организации жизни Методические разработки



бет1/5
Дата29.06.2016
өлшемі0.77 Mb.
#164689
түріМетодические разработки
  1   2   3   4   5



МИНИСТЕРСТВО ЗДРАВООХРАНЕИЯ УКРАИНЫ

КРЫМСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ

УНИВЕРСИТЕТ им. С.И. ГЕОРГИЕВСКОГО

Кафедра медицинской биологии
К. Л. Лазарев, М. Ф. Ромашова, Н.С. Прохорова
Молекулярно-клеточный уровень организации жизни

Методические разработки

к практическим занятиям

по медицинской биологии





Симферополь


2012

Рецензенты:



Барсуков Н. П. – доктор медицинских наук, профессор

Троценко Б.В. – доктор медицинских наук, профессор


Лазарев К. Л., Ромашова М. Ф., Прохорова Н.С.

Молекулярно-клеточный уровень организации жизни - Симферополь, 2012. – 65 с.

В учебном пособии излагается: современное микроскопирование биологических объектов, структурная организация соматических клеток. Также представлены данные по вопросам биологии наследственного аппарата клетки.

Каждый раздел начинается с изложения теоретических вопросов необходимых для понимания механизмов биологических процессов, а завершается контрольными тестами и Крок 1 для самоконтроля.

Пособие необходимо для самостоятельной подготовки студента к практическим занятиям по медицинской биологии.

© К.Л.Лазарев, М.Ф.Ромашова, Н.С.Прохорова, 2012


«Медицина, взятая в плане теории

это, прежде всего, общая биология»

(И. В. Давыдовский)
Биология — наука о живом. Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Предметом изучения медицинской биологии являются живые организмы, их строение, функции, взаимоотношение между организмами, природные сообщества организмов. Человек представляет не­отъемлемую часть живой природы, он входит в природные биоценозы, является важной составной частью различных наземных экосистем. Современный человек — носитель био­логической и социальной форм движения материи, в нем сфокусирована вся высшая сложность строения и регуля­ции материальных явлений.

Биологические проявления жизнедеятельности челове­ка служат отражением единства существования и эволюции живых систем, структурно-функциональную основу кото­рых составляет клетка. Поэтому практическая работа первокурсника на кафедре медицинской биологии начинается с изучения клетки, ее морфологии и физиологии, основ наследственности, реакции на внешние воздействия.


З А Н Я Т И Е 1

УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО.

ОПТИЧЕСКИЕ СИСТЕМЫ В БИОЛОГИЧЕСКИХ

ИССЛЕДОВАНИЯХ

    1. ЗНАЧЕНИЕ ТЕМЫ. Медицинская биология как наука про основы жизнедеятельности человека, которая изучает закономерности наследственности, изменчивости, индивидуального и эволюционного развития и морфологической и социальной адаптации человека к условиям окружающей среды в связи с ее биосоциальной сутью.

    2. ЦЕЛИ ЗАНЯТИЯ. Общая: Современные этапы развития общей и медицинской биологии. Место биологии в системе медицинского образования.

Суть жизни. Формы жизни, ее фундаментальные особенности и атрибуты. Эволюционные изменения структурные уровни организации жизни; элементарные структурные уровни и основы биологического явления, которые их характеризуют. Значение явлений про уровни организации живого для медицины.

Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним. Техника изготовления временных микропрепаратов, изучение и описание.





    1. КОНКРЕТНЫЕ ЦЕЛИ ЗАНЯТИЯ: У м е т ь

1.3.1. Охарактеризовать назначение основных час­тей микроскопа.

1.3.2. Работать с малым и большим увеличением микроскопа при изучении микропрепаратов.

1.3.3. Изготовить временный микропрепарат.
ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Методы микроскопирования

Световая микроскопия. Микрокопирование — основной метод изучения препаратов — используется в биологии уже более 300 лет. С момента внедрения первых микроскопов они постоянно совершенствовались. Современ­ные микроскопы представляют собой разнообразные сложные оптические системы, обладающие высокой разрешающей способ­ностью. Они позволяют изучать очень тонкие детали строения клеток и тканей. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разре­шаемым расстоянием (d0). В основном оно зависит от длины световой волны , и эта зависимость приближенно выража­ется формулой d0 = ½. Таким образом, чем меньше длина световой волны, тем меньше разрешаемое расстояние и тем мень­шие по размерам структуры можно видеть в препарате.

Для изучения биологических препаратов чаще применяют различные световые микроскопы, в которых источником освещения является естественный или искусственный свет. Минимальная длина волны видимой части спек­тра света соответствует примерно 0,4 мкм. Следовательно, для обычного светового микроскопа разрешаемое расстояние равно приблизительно 0,2 мкм (d0 = ½х 0,4 мкм = 0,2 мкм), а общее увеличение (произведение увеличения объектива на увеличение окуляра) достигает 2500 раз.



Конструктивные основные части микроскопа:

  • штатив, объединяющий механические приспособления;

  • оптическая система, дающая увеличенное изображение исследуемого материала;

  • о
    Рис.1.Световой биологический микроскоп «Биолам-С»

    1 — основание; 2 — тубусо-держатель; 3 — наклонный тубус; 4 — окуляр; 5 — револьвер; б — объективы; 7 — столик; 8 — конденсор с ирисовой диафрагмой; 9 — винт конденсора; 10 — зеркало; 11 — микрометрический винт; 12 — макрометрический винт.



    светительная система для направления световых лучей на рас­сматриваемый объект (рис. 1).


Штатив состоит из подставки и тубусодержателя, подвижно сое­диненного с ней. Тубусодержатель несет цилинд­рическую трубку — тубус, имеющую оптическую систему. Для перемещения тубуса используется макрометрический винт, с помощью которого осуществ­ляется предварительная фокусировка. Точная наводка на фокус достигается вращением микрометрического винта. К штативу крепится предметный столик. На него помещается препарат.

Оптическая система представлена объективами и окулярами. Объективы ввинчиваются в подвижное плато — револьвер и обращены к рассматриваемым пред­метам. Окуляры вставляются в отверстие тубуса и направ­ляются к глазу исследователя. Объектив дает истинное увеличение объекта, но обратное. Окуляр вторично увели­чивает изображение, делает его мнимым, оставляя обрат­ным. На объективы и окуляры нанесены цифры, характе­ризующие силу увеличения. Для практической работы студенты обычно использу­ют объектив малого увеличения — 8, большого увеличе­ния — 40, иммерсионный — 90, окуляры 7, 10, 15. Общее увеличение, даваемое микроскопом, равно произведению увеличения окуляра и объектива (например, – ок. 7 х об. 8 = ув. 56).

Для характеристики объектива существенное значение имеет его разрешающая способность. Она определяется наименьшим расстоянием между двумя точками, изобра­жение которых наблюдается раздельно в данной оптиче­ской системе. При исследовании в проходящем свете при обычном освещении разрешающая способность микроско­па равна 0,2 мкм. В практической работе улучшить разре­шающую способность можно, используя иммерсионное масло, которое вводится между исследуемым препаратом и специальным иммерсионным объективом. По­казатель преломления иммерсионного масла в 1,5 раза выше показателя преломления воздуха, кроме того, он совпадает с показателем преломления объектива, что обусловливает более полное использование светосилы объектива.



Осветительная система состоит из подвижного зеркала (10), необходимого для направления световых лучей в сто­рону исследуемого предмета и конденсора — систе­мы линз, которые собирают лучи от зеркала и концентрируют их на исследуемом объекте. Зеркало имеет две по­верхности — плоскую и вогнутую. Для получения более интенсивного освещения при отсутствии конденсора поль­зуются вогнутой поверхностью зеркала. При работе с боль­шими и особенно иммерсионными объективами применяют конденсор и плоское зеркало. Конденсор имеет ирис-диа­фрагму, регулирующую световой поток и кольцо свето­фильтра. Осветительный аппарат (конденсор, диафрагма, светофильтр) перемещается по вертикали вращением руко­ятки конденсора.

Для научных исследований применяются более сложные конструкции микроскопов (например, Laboval 4, Olympus-IMT2), с помощью которых можно фотографировать биологический объект.



Правила работы с биологическим микроскопом
1. Микроскоп хра­нят в футляре для защиты от пыли, влаги и света. Перенося мик­роскоп без футляра, правой рукой берут его за ручку штатива, ле­вой — поддерживают снизу.

2. Приступая к работе с микроскопом, окуляр, объектив и зеркало протирают мягкой тряпкой. То же делают после окончания работы. Если линза объекти­ва загрязнилась, необходимо протереть ее смоченной в бензине тряпочкой и вытереть насухо.

3. Начинают рассматривать препарат с малого увеличения (объектив 8х).

4. Перед началом работы необходимо осве­тить поле зрения микроскопа, для чего смотрят в окуляр левым глазом, поворачивают зеркало в направлении светового потока, пока поле зрения не будет хорошо и равномерно освещено.

5. Пре­парат помещают на предметный столик покровным стеклом кверху.

6. Для установления препарата в фокусе пользуются макрометрическим винтом. Для этого, глядя сбоку, а не в окуляр, поворотами винта опускают объектив почти до са­мого препарата. Затем, глядя в окуляр, начинают вращать винт в обратном направлении, поднимая тубус, пока в поле зрения не появится четкое изображение предмета. Одновременно смотреть в окуляр и опускать тубус запрещается во избежание повреждения линзы объектива и препарата. Микрометрический винт можно поворачи­вать не более чем на пол-оборота в обоих направлениях. Объект изучения должен быть в центре поля зрения.

7. Пере­ходя с меньшего на большее увеличение, нужно поворотом ре­вольвера поставить объектив большого увеличения (об. 40х) против нижнего отверстия тубуса, опустить объектив почти до самого препарата и лишь после этого смотреть в окуляр. Наводить на резкость надо только микровинтом.

8. Работая с иммерсионным объективом (об.90х), на предметное стекло наносят каплю масла, на которое опускают объектив иммерсии. Масло создает однородную среду для преломления световых лучей и значительно улучшает освеще­ние объекта, что весьма необходимо при работе на большом уве­личении.

9. Никогда не следует развинчивать окуляр и объектив.
Методика изготовления препаратов. Для изуче­ния объектов изготовляют временные или постоянные микропрепараты, для чего необходимы предметные и покровные стекла и объект исследования.

Предметное стекло представляет собой пластинку размером 76х40 мм, толщи­ной до 3 мм, а покровное — прямоугольную пластин­ку (24х24 или 18х18 мм), толщиной 0,15...0,2 мм.


Для изготовления временного микропрепарата объект помещают на предметное стекло в каплю воды и накрывают покровным стеклом. Чтобы не появились воздушные камеры, необходимо дотронуться до края капли одной из сторон покровного стекла и постепенно опускать его до горизонтального положения.

Воды берут столько, чтобы заполнить щель между предметным и покровным стеклами. Если жидкости много и она выступает за границы покровного стек­ла, ее убирают фильтровальной бумагой. Если же воды мало, ее вводят под покровное стекло пинцетом или стеклянной палочкой.



    1. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ЗНАНИЙ СТУДЕНТОВ

Медицинская биология как наука про основы жизнедеятельности человека, которая изучает закономерности наследственности и изменчивости, индивидуального и эволюционного развития морфологической и социальной адаптации человека к условиям окружающей среды в связи с биосоциальной сутью.

Современные этапы развития медицинской биологии. Место биологии в системе медицинского образования.

Суть жизни. Формы жизни, ее фундаментальные свойства и атрибуты. Эволюционно организованы структурные уровни жизни; элементарные структуры уровней и основы биологических явлений, которые их характеризуют. Значение явлений про уровни организации живого для медицины.

Особое место человека в системе органического света. Отношение физико-химических, биологических и социальных явлений жизнедеятельности человека.

Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним. Техника изготовления временных микропрепаратов, изучение и описание.

1.5. ОРГАНИЗАЦИОННАЯ СТРУКТУРА ПРАКТИЧЕСКОГО ЗАНЯТИЯ

1.4.1. Теоретические вопросы, которые необходимо усвоить для достижения целей занятия.

а) виды микроскопов;

б) устройство микроскопа;

в.) правила работы с микроскопом;

г) этапы изготовления временного микропрепарата.
1.4.2. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ.

а) установить микроскоп в рабочее положение; определить общее увеличение микроскопа при «малом» и «большом» увеличении;

б) рассмотреть под малым увеличением микроскопа асимметричную букву шрифта: сделать заключение о том, какое изображение дает световой микроскоп;

в) рассмотреть микропрепарат «Волос человека» под «ма­лым» и «большим» увеличением и зарисовать:

г) изготовить временный препарат из волокон ваты, рассмотреть под микроскопом и зарисовать; на рисунке отметить артефакты в виде соринок и пузырьков воздуха.
1.4.3. РЕШЕНИЕ ЦЕЛЕВЫХ ОБУЧАЮЩИХ ЗАДАЧ

ЗАДАЧА 1. При работе с микроскопом обнаружено, что все поле зрения затемнено. Какова причина затемнения ? Как ее устранить ?

ЗАДАЧА 2. Имеется мутное изображение объекта наблюде­ния. Как устранить этот дефект ?

ЗАДАЧА 3. При микроскопировании микропрепарат виден на «малом» увеличении, но не виден при «большом» увеличе­нии. Какова причина этого? Как устранить возникший де­фект ?

ЗАДАЧА 4. При микроскопировании обнаружено, что часть поля зрения освещена ярко, а часть затемнена. Какова причина ? Как устранить обнаруженный дефект ?
1.5. ПОДВЕДЕНИЕ ИТОГОВ ЗАНЯТИЯ преподавателем и проверка пра­вильности выполнения работ каждым студентом.
1.6. МЕСТО И ВРЕМЯ ЗАНЯТИЯ: учебная комната, 2 академичес­ких часа.

1.7. ОСНАЩЕНИЕ ЗАНЯТИЯ: микроскопы, микропрепараты, таблицы, схемы.
ЛИТЕРАТУРА : основная (1), дополнительная (2).

1.1. В.П. Пишак Биология медицинская Винница 2004

1.2. Королев В.А.; Кривошеина Г.Н.; Полякова Э. Г. Руководство к лабораторным занятиям по биологии. – Киев: Вища школа, 1986.

2.1. Лазарев К. Л. Клетка и биология развития. Симферополь, 2000.




З А Н Я Т И Е 2

МОРФОЛОГИЯ КЛЕТКИ. СТРУКТУРНЫЕ КОМПОНЕНТЫ

ЦИТОПЛАЗМЫ и ЯДРА

    1. ЗНАЧЕНИЕ ТЕМЫ. Цитоплазма и цитоскелет. Циклоз. Органеллы цитоплазмы – мембраны и мембранные назначения и принципы функционирования. Включения в клетках и их функции.

Ядро – центральный информативный аппарат клетки. Структура интерфазного ядра. Хромосомный и геномный уровни организации материала. Хроматин : эухроматин и гетерохроматин. Методы изучения структуры и функционирования клетки.

    1. ЦЕЛИ ЗАНЯТИЯ. Общая: Структурно- функциональная организация эукариотической клетки. Химический состав клетки: макро- и микроэлементы. Вода, значение связей в процессах жизнедеятельности клетки. Органические структуры – углевместимость вещей живых организмов.

1.3. КОНКРЕТНЫЕ ЦЕЛИ ЗАНЯТИЯ:

1.3.1. Уметь находить и определять на микропрепаратах клетки и их основные компоненты.

1.3.2. Получить представление о субмикроскопическом строении клеточных структур.
ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

В настоящее время на планете Земля есть две основные формы жизни: неклеточная и клеточная.



Неклеточная форма жизни - это вирусы. Их объединяют в само­стоятельную систематическую категорию Царство вирусы.

Клеточная форма жизни представлена огромным разнообразием клеток, которые существуют в виде самостоятельных одноклеточных организмов или входит в состав многоклеточных живых существ. Клеточная форма жизни существует в виде безъядерных структур (прокариот) и ядерных структур (эукариот). Различия между ними представлены в таблице.

Детальное изучение клеточных структур и их взаимодействия привело в середине нашего века к формированию представлений о клеточном уровне организации. Возникновение клетки сыграло решающую роль для прогрес­са жизни на нашей планете.

За последние 150 лет представления о клетке существенно изменились и расширились. Однако суть клеточной теории осталась неизменной.

Основные положения клеточной теории.

1.Клетка - элементарная структурно-функциональная единица жи­вой материи.

2. Клетки различных организмов сохраняют одинаковый принцип строения.

3. Размножение клеток происходит путем деления исходной мате­ринской клетки.




Различия между прокариотическими и эукариотическими клетками


№№ п/п

Основные параметры

Прокариоты

Эукариоты

1

Размеры

В среднем 0,5-5,0 мкм.

В среднем 40-60 мкм.

2

Форма


Круглые, вытянутые, нитчатые.

Разнообразная, могут иметь отростки.

3

Генетический материал


.Нуклеоид. Кольцевая ДНК в цитоплазме. Нет ядра и хромосом.

Линейная ДНК, связанная с белками и РНК. Хроматин и хромосомы в ядре.

4

Синтез белка


70S – рибосомы и мельче. ЭП ретикулума нет. Рибосомы - в цитоплазме.

80S – рибосомы и крупнее. Рибосомы в цитоплазме и в ЭП ретикулуме.

5

Органеллы


Органелл мало и они не имеют мембран (рибосомы).

Органелл много, есть мембранные (митохондрии, пластиды, лизосомы).

6

Клеточные стенки


Жесткие, состоят из полисахаридов. Компонент прочности – муреин.



Жесткие стенки у клеток растений и грибов (компонент прочности – целлюлоза). Клетки животных имеют плазмалемму покрытую гликокаликсом.

7


Фотосинтез



Хлоропласты отсутствуют. Происходит в мембранах,не имеющих специфической упаковки.

Хлоропласты есть в растительных клетках. В них идут процессы фотосинтеза.

8

Фиксация азота

Некоторые клетки фиксируют.

Клетки не способны к фиксации.

9

Деление

Простое (прямое)

Митоз (непрямое).





Рис. 2. Современная схема строения клетки по данным электронной микроскопии:

1 — цитоплазматический матрикс; 2 — комплекс Гольджи; 3 — клеточный центр; 4 — эндоплазматическая сеть; 5 — митохондрия; 6 — ядро; 7 — ядрышко; 8 — кариоплазма; 9 — хроматин; 10 – лизосома; 11 –экзоцитоз через цитоплазматическую мембрану, 12 – микроворсинки




Основными структур­ными компонентами эукариотических клеток являются клеточные мембраны, ядро, цитоплаз­ма с цитоскелетом, органеллы и включения (рис. 2).


1. Клеточная мембрана или плазмалемма, представляет тонкую биологическую пленку, которая ограничивает клетку. все известные биологические мембраны образуют замкнутые пространства - компартменты. Таким образом, главная функция клеточной мембраны - обес­печить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.

Основу плазмалеммы составляет двойной слой липидов, располо­женных перпендикулярно поверхности (рис. 3). Липидный бислой плазмалеммы содержит белки, которые подразделяются на два класса. Первый класс - транс­мембранные белки. Определенная часть их молекулы встроена в двой­ной липидный слой и пронизывает его на­сквозь. Второй класс – периферические белки-рецепторы, расположенные снаружи клеточной мембраны. Они покрыты слоем углеводов, образующих тонкое покрытие клетки – гликокаликс.

Мембранный транспорт различных оформленных частиц в клетке происходит путем эндоцитоза и экзоцитоза.

При эндоцитозе клетки поглощают макромолекулы и час­тицы, окружая их не­большим участком клеточной мембраны. Последняя впячивает­ся внутрь клетки, образуя везикулы (пузырьки). Если везикулы мел­кие и содержат внеклеточную жидкость, процесс называется пиноцитоз.



Если же они содержат крупные оформленные частицы, то форми­руются фагосомы, а явление известно, как фагоцитоз.

Экзоцитоз - это выход веществ из клетки в виде гранул секрета или вакуолей с клеточной жидкостью.

2. Ядро - центральный аппарат клетки, с которым связано хранение и передача генетической информации, обмен веществ, движение и размножение.

Ф


Рис. 3. Химическая модель плазмалеммы:

1 - двойной слой липидов; 2 - трансмембранные белки; 3, 4 - периферические белки; 5 – полисахариды гликокаликса.



орма ядра чаще округлая или вытянутая, реже дольча­тая. От цитоплазмы его отделяет ядерная оболочка. Она состоит из наружной и внутренней ядерных мембран, разделенных бесструктур­ным веществом. Мембраны имеют многочисленные поры, обеспечи­вающие избирательную связь с цитоплазмой. Каждая пора встроена в крупную дисковидную структуру, называемую поровый комплекс ядерной оболочки. Заполнено ядро гомогенной массой - нуклеоплазмой. В ее состав входят нуклеиновые кислоты и белки.

Комплекс ядерной ДНК со структурными белками гистонами и негистоновыми белками, содержащимися в больших количествах, называют хромати­ном. На цитологических препаратах хроматин имеет вид глыбок различной величины и формы. В период деления клетки в ядре выявля­ются митотические хромосомы. Они выглядят как короткие палочковидные тельца, обладающие особой индивидуальностью и функци­ей.

Важным компонентом ядра является одно или несколько ядры­шек. Это мелкие круглые тельца с высоким содержанием РНК и бел­ка. Ядрышковая РНК участвует в регуляции синтетических процессов в цитоплазме клетки.


3. Цитоплазма объединяет все живое вещество клетки, за исключе­нием ядра и ограничивающих клетку мембран. Гомогенная бесструктурная масса цитоплазмы получила название гиалоплазмы. В ней во взвешенном состоянии находятся органеллы и включения. Агрегатное состояние цитоплазмы бывает жидкое - золь и вязкое - гель. Основу цитоплазмы формирует цитоскелет клетки.

Цитоскелет - слож­ная сеть микротрубочек и белковых филаментов (нитей). Микротру­бочки играют роль направляющих. Это своеобразные рельсы, по ко­торым передвигаются органеллы. Филаменты выполняют сократи­тельную функцию.

Цитоплазма и некоторые структуры, расположен­ные в ней, могут перемещаться. Данное явление известно как ток цитоплазмы. Он особенно интенсивен в растительных клетках по причине их крупных размеров и жесткости стенок.

4. Органеллы и включения находятся в цитоплазме. Органеллы - это постоянные высокодифференцированные внутриклеточные обра­зования, выполняющие определенные функции. Внутреннее простран­ство любой внутриклеточной органеллы, ее компартмент, ограничено специализированными мембранами. Выделяют две большие группы органелл.

1. Органеллы общего значения - обязательны для жизнедеятельности всех клеток.

2. Специальные орга­неллы - выполняют направленные функции в клетках с узкой спе­циализацией (реснички и жгутики, миофибриллы и нейрофибриллы).

По принципу организации внутриклеточные компоненты подразделяются на одномембранные и двумембранные.



Одномембранные компоненты имеют вид каналов, цистерн, пузырьков ограниченных одной мембраной и тесно взаимосвязанных. Сюда можно отнести: а) эндоплазматический ретикулум; б) комплекс Гольджи; в) лизосомы; г) вакуоли у растительных клеток и некоторых простейших.

Двумем­бранные компоненты - это митохондрии и пластиды. Наружная мем­брана их всегда гладкая, внутренняя образует выросты, имеющие важ­ное функциональное значение. Систему двойных мембран имеет так­же ядро - центральный аппарат клетки. Ядерные мембраны содержат поры.

Немембранные структуры клетки немногочисленны и в той или иной мере связаны с системой мембран. В число их входят: а) рибосомы, состоящие из двух субъединиц; б) центросома, локализованная вблизи ядра; в) органеллы движения клеток – жгутики, реснички и миофибриллы; г) разнообразные клеточные включения.

Органеллы общего значения

Эндоплазматический ретикулум (ЭР) - разветвленная внутрикле­точная структура, представленная системой субмикроскопических канальцев с расширениями - цистернами.. Существует два типа ЭР.

Г

Рис. 4. Эндоплазматическая сеть и рибосомы (схема):

1 — мембраны; 2 — каналы эндоплазматической сети; 3 — матрикс; 4 — рибосомы.


ранулярный ЭР
, мембраны которого содержат рибосомы (рис. 4) .

Рибосомы - это ультрамикроскопические сферические гранулы, состоящие из двух половинок - большой и малой субъединиц, а также рибосомальной РНК. Главное назначение их - участие в синтезе белка.

Гладкий ЭР несет мембраны, лишенные рибосом. Здесь происходит синтез липидов и углеводов. ЭР объединен с ядром клетки, поскольку наруж­ная мембрана ядра непосредственно переходит в мембраны ЭР. Глад­кий и гранулярный ЭР связаны друг с другом, но отличаются по со­ставу содержащихся в них белков.

Митохондрии. Как по­казала электронная микроскопия, митохондрии имеют наружную и внутреннюю мембрану (рис. 5).

Н
Рис. 5. Пространственная модель митохондрии



Рис 6. Схема комплекса Гольджи:

1 – формирующий полюс диктиосомы, 2 – секретирующий полюс диктиосомы, 3 – мешочки-цистерны, 4 – микропузырьки, 5 – лизосома.



аружная мембрана напоминает сито, прони­цаемое для небольших белков. Внутренняя мембрана образует мно­гочисленные складки - кристы, в виде гребней, вдающихся во внут­реннюю полость, называемую матрикс. Промежуток между наружной и внутренней мембраной называют межмембранным пространством. На кристах содержатся дыхательные ферменты, необходимые для окис­лительного фосфорилирования. Результатом его является образование АТФ и выделение боль­шого количества энер­гии, необходимой для жизнедеятельности кле­ток. Митохондрии со­держат цитоплазматическую ДНК, отличную от ДНК ядра.
Комплекс Гольджи. По данным электронной микроскопии он состоит из диктиосом. Каждая диктиосома представляет стопку плоских мешочков-цистерн (рис. 6). Число цистерн в одной диктиосоме 5 - 7. От краев цистерн отделяются микропузырьки.

Основная функция комплекса Гольджи заключается в накоплении и конденсации продуктов синтезируемых эндоплазматическим ретикулумом и в образовании лизосом.



Лизосомы. Лизосомы представляют сферические частицы размерами 0,5 - 2,0 мкм. Они имеют плотную липопротеиновую мем­брану. содержат большой набор гидролитических ферментов. Они необ­ходимы для процессов внутриклеточного пищеварения.

Другой важной функцией лизосом является автолиз - посмертное растворение структурных компонентов клетки под действием ферментов лизосом.



Центросома.. Ти­пичная центросома представлена двумя центриолями Они соединенны перемычкой центродесмозой и окружены «лучистой» сферой - астросферой. При электронной микроскопии центриоли имеют вид ци­линдра, стенки каждого образованы микротрубочками, собранными попарно. Центросома обеспечивает процесс митоза, формируя митотический аппарат клетки.

Пластидыорганеллы свойственные автотрофным клеткам, способных к синтезу органических соединений. Пластиды отличаются по окраске:

1) бесцветные – лейкопласты,

2) окрашенные в зеленый цвет – хлоропласты,

3) различные желто-красные оттенки – хромопласты.

Все пластиды имеют мембранный принцип строения. Наиболее слож­но организованы хлоропласты, содержащие зеленый пигмент хлоро­филл, необходимый для фотосинтеза. Тело хлоропласта состоит из белков и липидов. Внутренняя мембрана хлоропласта ограничивает большую центральную область называемую строма. Она пронизана системой параллельных дисковидных мешочков, возникших в резуль­тате впячивания внутренней мембраны.. Это тилакоиды, содержащие фотосинтезирующую систему поглощения света и цепь транспорта электронов. В строме также находятся рибосомы, крахмальные зерна и цитоплазматическая ДНК.

Органеллы специального значения

Реснички и жгутики встреча­ются у одноклеточных организмов (бактерии, простейшие) и у клеток в составе тканей (клетки эпителия трахеи). Они связаны с элементами движения, которые характерны определенным видам клеток.

Миофибриллы имеются в мышечных клетках и обеспечивают сокращение мыщц.

Нейрофибриллы - являются обязательным компонентом многих нервных клеток и их отростков. Участвуют в передаче возбуждения.

Включения - непостоянные компоненты клетки, возникающие в результате внутриклеточного метаболизма или других процессов жизнедеятельности клетки.

В функциональном отношении все включения подразделяются на три группы: трофические, секреторные и специальные,



Трофические включения отражают повседневный метаболизм клетки. Они представлены гранулами гликогена, белковыми зернами, каплями жира.

Секреторные включения характерны, в основном, для желези­стых клеток.

Специальные включения присутствуют в высокоспециализированных клетках. К этой группе относят гранулы пигмента меланина, плотно заполняющего цитоплазму меланоцитов - особых клеток с защитной функцией.
1.4. ОРГАНИЗАЦИОННАЯ СТРУКТУРА ПРАКТИЧЕСКОГО ЗАНЯТИЯ

1.4.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ, КОТОРЫЕ НЕОБХОДИМО УСВОИТЬ ДЛЯ ДОСТИЖЕНИЯ ЦЕЛЕЙ ЗАНЯТИЯ

а) типы и виды клеток;

б) организация и функция клеточной мембраны и цитоплаз­мы;

в) строение и функция клеточного ядра;

г) строение и функция органоидов клетки.

1.4.2. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ЗНАНИЙ СТУДЕНТОВ

Структурно – функциональная организация эукариотической клетки. Химический состав клетки: макро- и микроэлементы. Вода значение водных связей в процессах жизнедеятельности клетки. Органические связи – углевместимость вещей живых организмов. Цитоплазма и цитоскелет , Циклоз. Органеллы цитоплазмы мембранные и немембранные, назначение и принципы функционирования. Включения в клетках их функции.

Ядро – центральный информационный аппарат клетки. Структура интерфазного ядра. Хромосомный и геномный уровни организации наследственного материала.Хроматин: еухроматин, гетерохроматин. Методы изучения структуры и функционирования клеток.

1.4.3. ПРОВЕРКА ИСХОДНОГО УРОВНЯ ПО ТЕСТАМ

1. Элементарной структурной единицей живой материи является:

а) ткань, б) углеводы, в) орган, г) нуклеиновые кис­лоты, д) клетка.

2. Органические вещества, выполняющие в клетке функции ферментов:

а) белки, б) углеводы, в) жиры, г) нуклеиновые кис­лоты, д) фосфолипиды.

3. Непрерывность жизни обеспечивается благодаря функци­и клетки:

а) обмен веществ и энергии, б) возбудимость, в) рост и размножение клеток, г) биосинтез органи­ческих соединений, д) биосинтез белков.

4. Выбрать органоиды клетки, в которых происходит образование энергии:

а) клеточный центр, б) лизосомы, в) рибосомы, г) хлоро­пласты, д) митохондрии).

5. К прокариотам относятся:

а) гаметы, б) фаги, в) вирусы, г) сине-зеленые водоросли, д) бактерии.

6. В каких органоидах содержится ДНК:

а) лизосомах, б) рибосомах, в) клеточном центре, г) митохондриях, д) комплексе Гольджи?

7. Органические вещества из неорганических образуются в процессе:

а) синтеза АТФ, б) синтеза белков, в) фотосинтеза, г) транскрипции, д) трансляции.

8. В клетках человека при физической нагрузке резко усиливается процесс синтеза АТФ, который происходит в:

a) рибосомах; б) лизосомах; в) комплексе Гольджи; г) блефаропласте; д) митохондриях.

9. Наружная мембрана клетки имеет множество микроворсинок. При их повреждении будет нарушена функция:

а) пиноцитоз; б) фагоцитоз; в) проведение нервного импульса; г) защитная; д) всасывание.

10. Какие из органелл клетки включены в работу на завершающем этапе, связанном с формированием капель секрета ?

а) свободные рибосомы цитоплазмы; б) лизосомы; в) гранулярная эндоплазматическая сеть; г) пластинчатый комплекс Гольджи; д) гладкая эндоплазматическая сеть.



КРОК 1

1. При биохимческом анализе клеток человека была получена ДНК, отличающаяся по составу от хромомсомной ДНК. Эта нуклеиновая кислота была получена из:

А. Рибосом;

В. Пластинчатого комплекса;

С. Гладкой эндоплазматической сети

Д. Митохондрий;

Е. Лизосом.



2. У человека в клетках кишечного эпителия происходит синтез видоспецифичных жиров и липидов. Этот процесс происхо­дит в:

А. Митохондриях

В. Пластинчатом комплексе Гольджи

С. Лизосомах

Д. Гладкой эндоплазматической сети

Е. Гранулярной эндоплазматической се­ти.




1.4.3. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

1. Рассмотреть под микроскопом и зарисовать:

а) микропрепарат «Пленка кожицы лука»,

б) микропрепа­рат «Эритроциты лягушки»,

в) микропрепарат «Эритроциты человека».

2. Изготовить и изучить временные микропрепараты живой растительной клетки из мякоти помидора и кожицы листа.

3. Зарисовать схему строения клетки, отметить детали строения клетки.
1.4.4. ПРОВЕДЕНИЕ ЗАКЛЮЧИТЕЛЬНОГО ТЕСТОВОГО КОНТРОЛЯ

1.Укажите основные компоненты прокариотической клетки:

а) ядро, б) нуклеоид, в) клеточная стенка, г) цито­плазма, д) митохондрии.

2. К прокариотам относятся:

а) вирусы, б) сине-зеленые водоросли, в) бактерии, г) грибы, д) бактериофаги.

3. Выделите основные компоненты эукариотической клетки:

а) ядро, б) пластиды, в) цитоплазма, г) нуклеоид, д) цитоплазматическая мембрана, е) вакуоли.

4. Каков химический состав цитоплазматической мембраны:

а) два слоя углеводов между двумя слоями белка, б) один слой липидов между двумя слоями белка, в) один слой углеводов и два слоя липидов, г) два слоя углеводов и один слой липидов, д) один слой углеводов и два слоя белков ?

5. Самый крупный органоид в клетке – это:

а) митохондрии, б) рибосомы, в) микротру­бочки, г) лиэосомы, д) клеточный центр ?

6. Какие основные компоненты ядра клетки:

а) ядерная оболочка, б) ядрышко, в) нуклеоплазма, г) центриоль, д) хроматин?

7. Синтез белков происходит в:

а) ядре, б) митохондриях, в) рибосомах, г) лизосомах, д) клеточном центре?

8. При повреждении какого органоида нарушается окисле­ние и освобождение энергии в клетке:

а) аппарат Гольжи, б) митохондрия, в) рибосома, г) лизосома, д) клеточный центр ?

9. Какой органоид отсутствует в клетке человека, но со­держится в клетках зеленых растений:

а) митохондрии, б) рибосомы, в) хлоропласты, г) хромо­сомы, д) клеточный центр ?

10. Что такое фагоцитоз:

а) поглощение клеткой жидкого материала, б) поглощение клеткой твер­дых частиц, в) поглощение минеральных веществ, г) поглощение воды ?

11.Клеточный центр состоит:

а) из двух центриолей, б) из двух ядрышек, в) из ва­куолей различной величины, г) из двух хромосом, д) из одного ядрышка и двух хромосом ?

12. Основной функцией лизосом является:

а) участие в пластическом обмене, б) участие в синте­зе углеводов, в) участие в переваривании различных веществ, г) участие в синтезе липидов, д) участие в обмене веществ ?

13. Больше всего митохондрий содержится:

а) в клетках, где активно протекают синтетические процессы, б) в эритроцитах, в) в клетках, где велики затраты энергии, г) в клетках, где синтезируются липиды, д) в клетках, где синтезируются углеводы ?

КРОК 1

1. Клетку лабораторного животного подвергли избыточному рентгеновскому облучению. В результате образовались белковые фрагменты в цитоплазме. Какой органоид клетки примет участие в их утилизации?
А. Комплекс Гольджи.

В. Рибосомы.

С. Эндоплазматический ретикулум.

Д. Лизосомы.

Е. Центросомы


2. В клетку путем фагоцитоза поступили высокомолекулярные соединения - белки и углеводы. Клетка синтезировала собственные соединения протеогликаны и выделила их в виде оформленных капель секрета. Какие из органелл клетки включены в работу на завершающем этапе, связанном с формированием капель секрета?

А. Гладкая эндоплазматическая сеть.

В. Лизосомы.

С. Гранулярная ЭПС

Д. Свободные рибосомы цитоплазмы.

Е. Пластинчатый комплекс Гольджи.



3. Как называется процесс синтеза АТФ, идущий сопряженно с реакциями окисления при участии системы ферментов митохондрий?
А.Восстановительное фосфорилирование

B. Свободное окисление

C.Окислительное фосфорилирование

D.Фотосинтетическое фосфорилирование

E. Субстратное фосфорилирование


4. Женщине 67 лет удалена опухоль матки. При гистологическом исследовании в опухолевых клетках найдены многополюсные митозы. С нарушением состояния каких органелл клетки связано проявления многополюсных митозов?

А. Вторичных лизосом.

В. Гладкой эндоплазматической сетки

С. Гранулярной ЭПС

Д. Пероксисом.

Е. Центриолей.



5. После удаления зуба у пациента образовалась раневая по­верхность, где произошла активная ре­генерация. Определите, какие из органелл обеспечили регенерацию тканей.

А. Лизосомы

В. Рибосомы

С. Пероксисомы

D. Митохондрии.

Е. Центросомы



6. В клетках курящего человека произошло разрушение комплекса Гольджи. После этого нарушилась функция:
А. биосинтез белка

В. сокращение мышечных волокон

С. накопление различных веществ

D. формирование рибосом

Е. процесс деления клетки.


7. При исследовании некоторых органоидов клетки в них обнаружены собственные нуклеиновые кислоты, содержащие урацил. Это органоиды:

А Клеточный центр;

В. Пластинчатый комплекс

С. Хромосомы;

D. Микротрубочки

Е. Рибосомы



8. В растущих тканях организма чело­века непрерывно синтезируются специфич­ные клеточные белки. Этот процесс происхо­дит благодаря работе:

А. Лизосом

В. Рибосом;

С. Клеточного центра;

Д. Гладкой ЭПС;

Е. Ядрышка.




1.5. Подведение итогов занятия преподавателем и проверка правильности выполнения работы каждым студентом.

1.6. Место и время занятия: учебная комната, 2 академических часа.

1.7. Оснащение занятия: микроскопы, микропрепараты, таблицы, схемы.
Литература: основная (1) и дополнительная (2).

1.1. В.П. Пишак Биология медицинская Винница 2004

1.2. Слюсарев А.А., Жукова С.В. Биология. – М.: Медицина, 1987.

1.3. Биология /Под ред. Ярыгина В.Н. – М.: Медицина, 1984.

1.4. Королев В.А. с соавт. Руководство к лабораторным занятиям по биологии. – Киев: Вища школа, 1986.

1.5. Королев В.А. Лекции по медицинской биологии. - Киев: Вища школа, 1993.

2.1. Королев В.А., Ромашова М.Ф. Биология живой клетки. – Симферополь, 1999.

2.2. Лазарев К. Л. Клетка и биология развития. Симферополь, 2000.

2.3. Лазарев К.Л., Демиденко Л.А. Медико-биологический словарь-спра-вочник – Сиферополь: Ната, 2003.

З А Н Я Т И Е 3

КЛЕТОЧНЫЕ МЕМБРАНЫ. ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ ПЛАЗМоЛЕМУ


    1. Значение темы. Изучение микроскопического строения клеточных мембран позволяет глубже понять причины возникновения болезненного процесса, способствует внедрению в практику новых методов диагностики и лечения.

    2. 1.2. Цели занятия. Общая: Получить представление о структуре и функции клеточных мембрат и о процессах трансмембранного переноса веществ.

    3. 1.3. Конкретные цели занятия:

      1. Уметь находить и определять на микропрепаратах клетки и их основные компоненты.

      2. Получить представление о строении клеточных мембран.





Достарыңызбен бөлісу:
  1   2   3   4   5




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет