Учебно-методический комплекс дисциплины «физика 2» для специальности «5В070200» автоматизация и управление


Металлы, диэлектрики и полупроводники по зонной теории



бет15/31
Дата25.06.2016
өлшемі7.1 Mb.
#158001
түріУчебно-методический комплекс
1   ...   11   12   13   14   15   16   17   18   ...   31

Металлы, диэлектрики и полупроводники по зонной теории


Зонная теория твердых тел позволила с единой точки зрения истолковать существова­ние металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетичес­кий уровень полностью заполнен, то образующаяся энергетическая зона также запол­нена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электро­нов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внеш­них «коллективизированных» электронов изолированных атомов.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 314. На рис. 314, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутризонный переход вполне возможен, так как, например, при 1 К энергия теплового движения kT10–4 эВ, т. е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10–22 эВ). Таким об­разом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 314, б). Это имеет место для щелочноземельных элементов, образующих II группу таблицы Менделеева (Be, Mg, Ca, Zn, ...). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочноземельных элементов обусловлены перекрытием валентной и свободной зон.

Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна полностью заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состоя­ний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны Е.

Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону прово­димости и кристалл является диэлектриком, оставаясь им при всех реальных тем­пературах (рис. 314, в). Если запрещенная зона достаточно узка (Е порядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источ­ника, способного передать электронам энергию Е, и кристалл является полупровод­ником (рис. 314, г).



Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaCl Е=6 эВ), для полупроводников — достаточ­но узка (например, для германия Е=0,72 эВ). При температурах, близких к 0 К, полупроводники ведут себя как диэлектрики, так как переброса электронов в зону проводимости не происходит. С повышением температуры у полупроводников растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости, т. е. электрическая проводимость проводников в этом случае увеличи­вается.


Собственная проводимость полупроводников


Полупроводниками являются твердые тела, которые при Т=0 характеризуются полно­стью занятой электронами валентной зоной, отделенной от зоны проводимости срав­нительно узкой (Е порядка 1 эВ) запрещенной зоной (рис. 314, г). Своим названием они обязаны тому, что их электропроводность меньше электропроводности металлов и больше электропроводности диэлектриков.

В природе полупроводники существуют в виде элементов (элементы IV, V и VI групп Периодической системы элементов Менделеева), например Si, Ge, As, Se, Те, и химических соединений, например оксиды, сульфиды, селениды, сплавы элементов различных групп. Различают собственные и примесные полупроводники. Собственными полупроводниками являются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников мо­гут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др.

При 0 К и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении же температуры электроны с верхних уровней валентной зоны I могут быть переброшены на нижние уровни зоны проводи­мости II (рис. 315). При наложении на кристалл электрического поля они перемещают­ся против поля и создают электрический ток. Таким образом, зона II из-за ее частичного «укомплектования» электронами становится зоной проводимости. Прово­димость собственных полупроводников, обусловленная электронами, называется элек­тронной проводимостью или проводимостью n-типа (от лат. negative — отрицательный).

В результате тепловых забросов электронов из зоны I в зону II в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электричес­ком поле на освободившееся от электрона место — дырку — может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т. д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электрона, так, как если бы дырка об­ладала положительным зарядом, равным по величине заряду электрона. Проводи­мость собственных полупроводников, обусловленная квазичастицами — дырками, на­зывается дырочной проводимостью или проводимостью p-типа (от лат. positive — поло­жительный).



Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне, так как последние соответствуют электронам, возбужденным в зону проводимости. Следовательно, если концентрации электронов проводимости и дырок обозначить соответственно пe, и nр, то



(242.1)

Проводимость полупроводников всегда является возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т. д.).

В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны (рис. 316). Действительно, для переброса электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны E. При появлении же электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следовательно, энергия, затраченная на образование пары носителей тока, должна делиться на две равные части. Так как энергия, соответствующая половине ширины запрещенной зоны, идет на переброс электрона и такая же энергия затрачивается на образование дырки, то начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны. Энергия Ферми в собственном полупроводнике представляет собой энергию, от кото­рой происходит возбуждение электронов и дырок.

Вывод о расположении уровня Ферми в середине запрещенной зоны собственного полупро­водника может быть подтвержден математическими выкладками. В физике твердого тела до­казывается, что концентрация электронов в зоне проводимости



(242.2)

где E2энергия, соответствующая дну зоны проводимости (рис. 316), ЕFэнергия Ферми, Т — термодинамическая температура, С1 постоянная, зависящая от температуры и эффектив­ной массы электрона проводимости. Эффективная масса — величина, имеющая размерность массы и характеризующая динамические свойства квазичастиц — электронов проводимости и ды­рок. Введение в зонную теорию эффективной массы электрона проводимости позволяет, с одной стороны, учитывать действие на электроны проводимости не только внешнего поля, но и внутрен­него периодического поля кристалла, а с другой стороны, абстрагируясь от взаимодействия электронов проводимости с решеткой, рассматривать их движение во внешнем поле как движение свободных частиц.

Концентрация дырок в валентной зоне

(242.3)

где С2 — постоянная, зависящая от температуры и эффективной массы дырки, Е1 энергия, соответствующая верхней границе валентной зоны. Энергия возбуждения в данном случае от­считывается вниз от уровня Ферми (рис. 316), поэтому величины в экспоненциальном множителе (242.3) имеют знак, обратный знаку экспоненциального множителя в (242.2). Так как для собствен­ного полупроводника пe=np (242.1), то



Если эффективные массы электронов и дырок равны (), то С12 и, следовательно, (E2EF)= =E1EF, откуда



т. е. уровень Ферми в собственном полупроводнике действительно расположен в середине запре­щенной зоны.

Taк как для собственных полупроводников E>>kT, то распределение Фер­ми — Дирака (235.2) переходит в распределение Максвелла — Больцмана. Положив в (236.2) EEF  E/2, получим

(242.4)

Количество электронов, переброшенных в зону проводимости, а следовательно, и ко­личество образовавшихся дырок пропорциональны N(Е). Таким образом, удельная проводимость собственных полупроводников



(242.5)

где 0 — постоянная, характерная для данного полупроводника.

Увеличение проводимости полупроводников с повышением температуры является их характерной особенностью (у металлов с повышением температуры проводимость уменьшается). С точки зрения зонной теории это обстоятельство объяснить довольно просто: с повышением температуры растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости и участвуют в проводимости. Поэтому удельная проводимость собственных полупроводников с повышением тем­пературы растет.

Если представить зависимость ln от 1/T, то для собственных полупроводни­ков — это прямая (рис. 317), по наклону которой можно определить ширину запрещен­ной зоны Е, а по ее продолжению — 0 (прямая отсекает на оси ординат отрезок, равный ln 0).



рис. 317


Одним из наиболее широко распространенных полупроводниковых элементов явля­ется германий, имеющий решетку типа алмаза, в которой каждый атом связан ковалентными связями (см. § 71) с четырьмя ближайшими соседями. Упрощенная плоская схема расположения атомов в кристалле Ge дана на рис. 318, где каждая черточка обозначает связь, осуществляемую одним электроном. В идеальном кристалле при 0 К такая структура представляет собой диэлектрик, так как все валентные электроны участвуют в образовании связей и, следовательно, не участвуют в проводимости.

При повышении температуры (или под действием других внешних факторов) тепловые колебания решетки могут привести к разрыву некоторых валентных связей, в результате чего часть электронов отщепляется и они становятся свободными. В поки­нутом электроном месте возникает дырка (она изображена белым кружком), заполнить которую могут электроны из соседней пары. В результате дырка, так же как и освобо­дившийся электрон, будет двигаться по кристаллу. Движение электронов проводимо­сти и дырок в отсутствие электрического поля является хаотическим. Если же на кристалл наложить электрическое поле, то электроны начнут двигаться против поля, дырки— по полю, что приведет к возникновению собственной проводимости герма­ния, обусловленной как электронами, так и дырками.

В полупроводниках наряду с процессом генерации электронов и дырок идет процесс рекомбинации: электроны переходят из зоны проводимости в валентную зону, отдавая энергию решетке и испуская кванты электромагнитного излучения. В результате для каждой температуры устанавливается определенная равновесная концентрация элект­ронов и дырок, изменяющаяся с температурой согласно выражению (242.4).

рис. 318

Примесная проводимость полупроводников


Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники — примесными полупроводниками. Примесная проводимость обусловлена примесями (атомы посторонних элементов), а также дефек­тами типа избыточных атомов (по сравнению со стехиометрическим составом), тепло­выми (пустые узлы или атомы в междоузлиях) и механическими (трещины, дислокации и т. д.) дефектами. Наличие в полупроводнике примеси существенно изменяет его проводимость. Например, при введении в кремний примерно 0,001 ат.% бора его проводимость увеличивается примерно в 106 раз.

Примесную проводимость полупроводников рассмотрим на примере Ge и Si, в которые вводятся атомы с валентностью, отличной от валентности основных атомов на единицу. Например, при замещении атома германия пятивалентным атомом мы­шьяка (рис. 319, а) один электрон не может образовать ковалентной связи, он оказыва­ется лишним и может быть легко при тепловых колебаниях решетки отщеплен от атома, т. е. стать свободным. Образование свободного электрона не сопровождается нарушением ковалентной связи; следовательно, в отличие от случая, рассмотренного в § 242, дырка не возникает. Избыточный положительный заряд, возникающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может.

С точки зрения зонной теории рассмотренный процесс можно представить следу­ющим образом (рис. 319, б). Введение примеси искажает поле решетки, что приводит к возникновению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем. В случае германия с примесью мышьяка этот уровень располагается от дна зоны проводимости на расстоянии ED=0,013 эВ. Так как ED<kT, то уже при обычных температурах энергия теплового движения достаточна для того, чтобы перебросить электроны примесного уровня в зону проводимости; образующиеся при этом положительные заряды локализуются на неподвижных атомах мышьяка и в проводимости не участвуют.

Таким образом, в полупроводниках с примесью, валентность которой на единицу больше валентности основных атомов, носителями тока являются электроны; воз­никает электронная примесная проводимость (проводимость n-типа). Полупроводники с такой проводимостью называются электронными (или полупроводниками n-типа). Примеси, являющиеся источником электронов, называются донорами, а энергетические уровни этих примесей — донорными уровнями.

Предположим, что в решетку кремния введен примесный атом с тремя валентными электронами, например бор (рис. 320, а). Для образования связей с четырьмя ближай­шими соседями у атома бора не хватает одного электрона, одна из связей остается неукомплектованной и четвертый электрон может быть захвачен от соседнего атома основного вещества, где соответственно образуется дырка. Последовательное заполне­ние образующихся дырок электронами эквивалентно движению дырок в полупровод­нике, т. е. дырки не остаются локализованными, а перемещаются в решетке кремния как свободные положительные заряды. Избыточный же отрицательный заряд, воз­никающий вблизи атома примеси, связан с атомом примеси и по решетке перемещать­ся не может.

По зонной теории, введение трехвалентной примеси в решетку кремния приводит к возникновению в запрещенной зоне примесного энергетического уровня А, не занято­го электронами. В случае кремния с примесью бора этот уровень располагается выше верхнего края валентной зоны на расстоянии EA=0,08 эВ (рис. 320, б). Близость этих уровней к валентной зоне приводит к тому, что уже при сравнительно низких тем­пературах электроны из валентной зоны переходят на примесные уровни и, связываясь с атомами бора, теряют способность перемещаться по решетке кремния, т. е. в прово­димости не участвуют. Носителями тока являются лишь дырки, возникающие в ва­лентной зоне.



Таким образом, в полупроводниках с примесью, валентность которой на единицу меньше валентности основных атомов, носителями тока являются дырки; возникает дырочная проводимость (проворность p-типа). Полупроводники с такой проводимостью называются дырочными (или полупроводниками p-типа). Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторами, а энергети­ческие уровни этих примесей — акцепторными уровнями.

В отличие от собственной проводимости, осуществляющейся одновременно элект­ронами и дырками, примесная проводимость полупроводников обусловлена в основ­ном носителями одного знака: электронами—в случае донорной примеси, дырка­ми — в случае акцепторной. Эти носители тока называются основными. Кроме основ­ных носителей в полупроводнике имеются и неосновные носители: в полупроводниках n-типа — дырки, в полупроводниках p-типа электроны.

Наличие примесных уровней в полупроводниках существенно изменяет положение уровня Ферми ЕF. Расчеты показывают, что в случае полупроводников n-типа уровень Ферми ЕF0 при 0 К расположен посередине между дном зоны проводимости и донорным уровнем (рис. 321), С повышением температуры все большее число электронов переходит из донорных состояний в зону проводимости, но, помимо этого, возрастает и число тепловых флуктуаций, способных возбуждать электроны из валентной зоны и перебрасывать их через запрещенную зону энергий. Поэтому при высоких тем­пературах уровень Ферми имеет тенденцию смещаться вниз (сплошная кривая) к свое­му предельному положению в центре запрещенной зоны, характерному для собствен­ного полупроводника.

Уровень Ферми в полупроводниках р-типа при 0 К ЕF0 располагается посередине между потолком валентной зоны и акцепторным уровнем (рис. 322). Сплошная кривая опять-таки показывает его смещение с температурой. При температурах, при которых примесные атомы оказываются полностью истощенными и увеличение концентрации носителей происходит за счет возбуждения собственных носителей, уровень Ферми располагается посередине запрещенной зоны, как в собственном полупроводнике.

Проводимость примесного полупроводника, как и проводимость любого провод­ника, определяется концентрацией носителей и их подвижностью. С изменением тем­пературы подвижность носителей меняется по сравнительно слабому степенному зако­ну, а концентрация носителей — по очень сильному экспоненциальному закону, поэто­му проводимость примесных полупроводников от температуры определяется в основ­ном температурной зависимостью концентрации носителей тока в нем. На рис. 323 дан примерный график зависимости ln от 1/T для примесных полупроводников. Участок AB описывает примесную проводимость полупроводника. Рост примесной проводимо­сти полупроводника с повышением температуры обусловлен в основном ростом концентрации примесных носителей. Участок ВС соответствует области истощения примесей (это подтверждают и эксперименты), участок CD описывает собственную проводимость полупроводника.



рис. 323


Фотопроводимость полупроводников


Фотопроводимость полупроводниковувеличение электропроводности полу­проводников под действием электромагнитного излучения — может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (h  E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 324, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками.

Если полупроводник содержит примеси, то фотопроводимость может возникать и при h < E: для полупроводников с донорной примесью фотон должен обладать энергией h  ЕD, а для полупроводников с акцепторной примесью — h  ЕA. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа (рис. 324, б) или из валентной зоны на акцепторные уровни в случае полупроводника p-типа (рис. 324, в). В результате возникает примесная фотопроводимость, являющаяся чисто электронной для полупроводников п-типа и чисто дырочной для полупроводников p-типа.



Таким образом, если



(244.1)

(Eп — в общем случае энергия активации примесных атомов), то в полупроводнике возбуждается фотопроводимость. Из (244.1) можно определить красную границу фотопроводимости — максимальную длину волны, при которой еще фотопроводимость возбуждается:



Учитывая значения E и Eп для конкретных полупроводников, можно показать, что красная граница фотопроводимости для собственных полупроводников приходится на видимую область спектра, для примесных же полупроводников — на инфрак­расную.

На рис. 325 представлена типичная зависимость фотопроводимости j и коэффициен­та поглощения от длины волны падающего на полупроводник света. Из рисунка следует, что при >0 фотопроводимость действительно не возбуждается. Спад фото­проводимости в коротковолновой части полосы поглощения объясняется большой скоростью рекомбинации в условиях сильного поглощения в тонком поверхностном слое толщиной х1 мкм (коэффициент поглощения 106 м–1).

Наряду с поглощением, приводящим к появлению фотопроводимости, может иметь место экситонный механизм поглощения. Экситоны представляют собой квази­частицы — электрически нейтральные связанные состояния электрона и дырки, образу­ющиеся в случае возбуждения с энергией, меньшей ширины запрещенной зоны. Уровни энергии экситонов располагаются у дна зоны проводимости. Так как экситоны элект­рически нейтральны, то их возникновение в полупроводнике не приводит к появлению дополнительных носителей тока, вследствие чего экситонное поглощение света не сопровождается увеличением фотопроводимости.


Люминесценция твердых тел


В природе давно известно излучение, отличное по своему характеру от всех известных видов излучения (теплового излучения, отражения, рассеяния света и т. д.). Этим излучением является люминесцентное излучение, примерами которого может служить свечение тел при облучении их видимым, ультрафиолетовым и рентгеновским излуче­нием, -излучением и т.д. Вещества, способные под действием различного рода возбуждений светиться, получили название люминофоров.

Люминесценция — неравновесное излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, большую периода световых колебаний. Первая часть этого определения приводит к выводу, что люминесценция не является тепловым излучением (см. § 197), поскольку любое тело при температуре выше 0 К излучает электромагнитные волны, а такое излучение является тепловым. Вторая часть показывает, что люминесценция не является таким видом свечения, как отражение и рассеяние света, тормозное излучение заряженных частиц и т. д. Период световых колебаний составляет примерно 10–15 с, поэтому длительность, по которой свечение можно отнести к люминесценции, больше—примерно 10–10 с. Признак длительности свечения дает возможность отличить люминесценцию от других нерав­новесных процессов. Так, по этому признаку удалось установить, что излучение Вавилова — Черенкова (см. § 189) нельзя отнести к люминесценции.

В зависимости от способов возбуждения различают: фотолюминесценцию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения), катодолюминесценцию (под действием электронов), электролюминесценцию (под дейст­вием электрического поля), радиолюминесценцию (при возбуждении ядерным излучени­ем, например -излучением, нейтронами, протонами), хемилюминесценцию (при хи­мических превращениях), триболюминесценцию (при растирании и раскалывании неко­торых кристаллов, например сахара). По длительности свечения условно различают: флуоресценцию (t10–8с) и фосфоресценцию — свечение, продолжающееся заметный промежуток времени после прекращения возбуждения.

Первое количественное исследование люминесценции проведено более ста лет назад Дж. Стоксом,* сформулировавшим в 1852 г. следующее правило: длина вол­ны люминесцентного излучения всегда больше длины волны света, возбудившего его (рис. 326). Согласно квантовой теории, правило Стокса означает, что энергия h падающего фотона частично расходуется на какие-то неоптические процессы, т. е.

откуда люм< или люм> что и следует из сформулированного правила.



Основной энергетической характеристикой люминесценции является энергетический выход, введенный С. И. Вавиловым в 1924 г., — отношение энергии, излученной люминофором при полном высвечивании, к энергии, поглощенной им. Типичная для органических люминофоров (на примере раствора флуоресцина) зависимость энергетического выхода от длины волны возбуждающего света представлена на рис. 327. Из рисунка следует, что вначале растет пропорционально , а затем, достигая максимального значения, быстро спадает до нуля при дальнейшем уве­личении (закон Вавилова). Величина энергетического выхода для различных лю­минофоров колеблется в довольно широких пределах, максимальное ее значение может достигать примерно 80%.

Твердые тела, представляющие собой эффективно люминесцирующие искусственно приготовленные кристаллы с чужеродными примесями, получили название кристаллофосфоров. На примере кристаллофосфоров рассмотрим механизмы возникновения люминесценции с точки зрения зонной теории твердых тел. Между валентной зоной и зоной проводимости кристаллофосфора располагаются примесные уровни активато­ра (рис. 328). При поглощении атомом активатора фотона с энергией h электрон с примесного уровня переводится в зону проводимости, свободно перемещается по кристаллу до тех пор, пока не встретится с ионом активатора и не рекомбинирует с ним, перейдя вновь на примесный уровень. Рекомбинация сопровождается излучени­ем кванта люминесцентного свечения. Время высвечивания люминофора определяется временем жизни возбужденного состояния атомов активатора, которое обычно не превышает миллиардных долей секунды. Поэтому свечение является кратковременным и исчезает почти вслед за прекращением облучения.

Для возникновения длительного свечения (фосфоресценции) кристаллофосфор должен содержать также центры захвата, или ловушки для электронов, представ­ляющие собой незаполненные локальные уровни (например, Л1 и Л2), лежащие вблизи дна зоны проводимости (рис. 329). Они могут быть образованы атомами примесей, атомами в междоузлиях и т. д. Под действием света атомы активатора возбуждаются, т. е. электроны с примесного уровня переходят в зону проводимости и становятся свободными. Однако они захватываются ловушками, в результате чего теряют свою подвижность, а следовательно, и способность рекомбинировать с ионом активатора. Освобождение электрона из ловушки требует затраты определенной энергии, которую электроны могут получить, например, от тепловых колебаний решетки. Освобожден­ный из ловушки электрон попадает в зону проводимости и движется по кристаллу до тех пор, пока или не будет снова захвачен ловушкой, или не рекомбинирует с ионом активатора. В последнем случае возникает квант люминесцентного излучения. Длите­льность этого процесса определяется временем пребывания электронов в ловушках.

Явление люминесценции получило широкое применение в практике, например люминесцентный анализ — метод определения состава вещества по характерному его свечению. Этот метод, являясь весьма чувствительным (примерно 10–10 г/см3), позво­ляет обнаруживать наличие ничтожных примесей и применяется при тончайших ис­следованиях в биологии, медицине, пищевой промышленности и т. д. Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин и других изделий (исследуемая поверхность покрывается для этого люминес­центным раствором, который после удаления остается в трещинах).

Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов (см. § 233) и сцинтилляторов (будут рассмотрены ниже), применяются в электронно-оптических преобразователях (см. § 169), для созда­ния аварийного и маскировочного освещения и для изготовления светящихся указа­телей различных приборов.

Контакт двух металлов по зонной теории


Если два различных металла привести в соприкосновение, то между ними возникает разность потенциалов, называемая контактной разностью потенциалов. Итальянский физик А. Вольта (1745—1827) установил, что если металлы А1, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd привести в контакт в указанной последовательности, то каждый предыдущий при соприкосновении с одним из следующих зарядится положительно. Этот ряд называется рядом Вольта. Контактная разность потенциалов для различных металлов составляет от десятых до целых вольт.

Вольта экспериментально установил два закона:

1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.

2. Контактная разность потенциалов последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, воз­никающей при непосредственном соединении крайних проводников.

Для объяснения возникновения контактной разности потенциалов воспользуемся представлениями зонной теории. Рассмотрим контакт двух металлов с различными работами выхода А1 и А2, т.е. с различными положениями уровня Ферми (верхнего заполненного электронами энергетического уровня). Если A1<A2 (этот случай изоб­ражен на рис. 330, а), то уровень Ферми располагается в металле 1 выше, чем в метал­ле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1 будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2 — отрицательно. Одновременно проис­ходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицатель­но, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающи­мися металлами не установится равновесие, которое, как доказывается в статистичес­кой физике, характеризуется совпадением уровней Ферми в обоих металлах (рис. 330, б).

Так как для соприкасающихся металлов уровни Ферми совпадают, а работы выхода А1 и A2 не изменяются (они являются константами металлов и не зависят от того, находятся металлы в контакте или нет), то потенциальная энергия эле­ктронов в точках, лежащих вне металлов в непосредственной близости к их по­верхности (точки А и В на рис. 330, б), будет различной. Следовательно, между точками А и В устанавливается разность потенциалов, которая, как следует из рисунка, равна

(246.1)

Разность потенциалов (246.1), обусловленная различием работ выхода контактиру­ющих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю.

Если уровни Ферми для двух контактирующих металлов не одинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенци­алов, которая, как следует из рисунка, равна

(246.2)

В квантовой теории доказывается, что причиной возникновения внутренней кон­тактной разности потенциалов является различие концентраций электронов в контак­тирующих металлах. '' зависит от температуры T контакта металлов (поскольку наблюдается зависимость ЕF от T), обусловливая термоэлектрические явления. Как правило, ''<<'.

Если, например, привести в соприкосновение три разнородных проводника, име­ющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она, как можно показать (предоставляем это сделать читателю), не зависит от природы проме­жуточных проводников (второй закон Вольта).

Внутренняя контактная разность потенциалов возникает в двойном электрическом слое, образующемся в приконтактной области и называемом контактным слоем. Толщина контактного слоя в металлах составляет примерно 10–10 м, т. е. соизмерима с междоузельными расстояниями в решетке металла. Число электронов, участвующих в диффузии через контактный спой, составляет примерно 2% от общего числа электро­нов, находящихся на поверхности металла. Столь незначительное изменение концент­рации электронов в контактном слое, с одной стороны, и малая по сравнению с длиной свободного пробега электрона его толщина — с другой, не могут привести к замет­ному изменению проводимости контактного слоя по сравнению с остальной частью металла. Следовательно, электрический ток через контакт двух металлов проходит так же легко, как и через сами металлы, т.е. контактный слой проводит электрический ток в обоих направлениях (12 и 21) одинаково и не дает эффекта выпрямления, который всегда связан с односторонней проводимостью.




Термоэлектрические явления и их применение


Согласно второму закону Вольта, в замкнутой цепи, состоящей из нескольких металлов, находящихся при одинаковой температуре, э.д.с. не возникает, т. е. не происходит возбуждения электрического тока. Однако если температура контактов не одинакова, то в цепи возникает электрический ток, называемый термоэлектрическим. Явление возбуждения термоэлектрического тока (явление Зеебека), а также тесно связанные с ним явления Пельте и Томсона называются термоэлектрическими явлениями.0

1. Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных провод­ников, контакты между которыми имеют различную температуру, возникает элект­рический ток.

Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 с температурами спаев Т1 (контакт А) и Т2 (контакт В), причем Т1 > T2 (рис. 331).

Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, Сu—Bi, Ag—Сu, Аu—Сu) электродвижущая сила прямо пропор­циональна разности температур в контактах:

Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при Т12 на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары метал­лов медь — константан, для разности температур 100 К составляет всего 4,25 мВ.

Причина возникновения термоэлектродвижущей э.д.с. ясна уже из формулы (246.2), определяющей внутреннюю контактную разность потенциалов на границе двух металлов. Дело в том, что положение уровня Ферми зависит от температуры. Поэтому если температуры контактов разные, то разными будут и внутренние контактные разности потенциалов. Таким образом, сумма скачков потенциала отлична от нуля, что и приво­дит к возникновению термоэлектрического тока. Отметим также, что при градиенте температуры происходит и диффузия электронов, которая тоже обусловливает термо-э.д.с.

Явление Зеебека не противоречит второму началу термодинамики, так как в дан­ном случае внутренняя энергия преобразуется в электрическую, для чего используется два источника теплоты (два контакта). Следовательно, для поддержания постоянного тока в рассматриваемой цепи необходимо поддерживать постоянство разности тем­ператур контактов: к более нагретому контакту непрерывно подводить теплоту, а от холодного — непрерывно ее отводить.

Явление Зеебека используется для измерения температуры. Для этого применяются термоэлементы, или термопары—датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов. Чувствительность термопар выше, если их соединять последовательно. Эти соедине­ния называются термобатареями (или термостолбиками). Термопары применяются как для измере­ния ничтожно малых разностей температур, так и для измерения очень высоких и очень низких температур (например, внутри доменных печей или жидких газов). Точность определения тем­пературы с помощью термопар составляет, как правило, несколько кельвин, а у некоторых термопар достигает 0,01 К. Термопары обладают рядом преимуществ перед обычными термо­метрами: имеют большую чувствительность и малую инерционность, позволяют проводить измерения в широком интервале температур и допускают дистанционные измерения.

Явление Зеебека в принципе может быть использовано для генерации электрического тока. Так, уже сейчас к.п.д. полупроводниковых термобатарей достигает 18%. Следовательно, совер­шенствуя полупроводниковые термоэлектрогенераторы, можно добиться эффективного прямого преобразования солнечной энергии в электрическую.



2. Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1845) обнару­жил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.

Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2 (рис. 332), по которым пропускается ток I ' (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 331 при условии T1>T2)). Согласно наблюдениям Пельтье, спай А, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В — нагреваться. При изменении направления тока I ' спай А будет нагреваться, спай В — охлаждаться.



Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной—кинетической плюс потенциальной). Если электроны (направление их движения задано на рис. 332 пунктир­ными стрелками) пройдут через спай В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спае А электроны переходят в область с большей энергией, забирая теперь недоста­ющую энергию у кристаллической решетки, и спай будет охлаждаться.

Явление Пельтье используется в термоэлектрических полупроводниковых холо­дильниках, созданных впервые в 1954 г. под руководством А. Ф. Иоффе, и в некото­рых электронных приборах.

3. Явление Томсона (1856). Вильям Томсон (Кельвин), исследуя термоэлектрические явления, пришел к заключению, подтвердив его экспериментально, что при прохожде­нии тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следующим образом. Так как в более нагретой части проводника электроны имеют большую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.

Выпрямление на контакте металл — полупроводник


Рассмотрим некоторые особенности механизма процессов, происходящих при приведе­нии в контакт металла с полупроводником. Для этого возьмем полупроводник л-типа с работой выхода А, меньшей работы выхода Ам из металла. Соответствующие энергетические диаграммы до и после приведения в контакт показаны на рис. 333, а, б.

Если Ам, то при контакте электроны из полупроводника будут переходить в металл, в результате чего контактный слой полупроводника обеднится электронами и зарядится положительно, а металл — отрицательно. Этот процесс будет проис­ходить до достижения равновесного состояния, характеризуемого, как и при контакте двух металлов, выравниванием уровней Ферми для металла и полупроводника. На контакте образуется двойной электрический слой d, поле которого (контактная разность потенциалов) препятствует дальнейшему переходу электронов. Вследствие малой концентрации электронов проводимости в полупроводнике (порядка 1015 см–3 вместо 1021 см–3 в металлах) толщина контактного слоя в полупроводнике достигает пример­но 10–6 см, т. е. примерно в 10 000 раз больше, чем в металле. Контактный спой полупроводника обеднен основными носителями тока — электронами в зоне проводи­мости, и его сопротивление значительно больше, чем в остальном объеме полупровод­ника. Такой контактный слой называется запирающим.

При d=10–6 см и  1 В напряженность электрического поля контактного слоя E=/d  108 В/м. Такое контактное поле не может сильно повлиять на структуру спектра (например, на ширину запрещенной зоны, на энергию активации примесей и т. д.) и его действие сводится лишь к параллельному искривлению всех энергетичес­ких уровней полупроводника в области контакта (рис. 333, б). Так как в случае контакта уровни Ферми выравниваются, а работы выхода—величины постоянные, то при Ам энергия электронов в контактном слое полупроводника больше, чем в остальном объеме. Поэтому в контактном слое дно зоны проводимости поднимается вверх, удаляясь от уровня Ферми. Соответственно происходит и искривление верхнего края валентной зоны, а также донорного уровня.

Помимо рассмотренного выше примера возможны еще следующие три случая контакта металла с примесными полупроводниками: a) Ам < А, полупроводник п-типа; б) Ам > А, полупроводник p-типа; в) Ам < А, полупроводник р-типа. Соответствующие зонные схемы показаны на рис. 334.

Если Ам<А, то при контакте металла с полупроводником п-типа электроны из металла переходят в полупроводник и образуют в контактном слое полупроводника отрицательный объемный заряд (рис. 334, а). Следовательно, контактный слой полу­проводника обладает повышенной проводимостью, т.е. не является запирающим. Рассуждая аналогично, можно показать, что искривление энергетических уровней по сравнению с контактом металл — полупроводник п-типа (Ам > А) происходит в обрат­ную сторону.

При контакте металла с полупроводником р-типа запирающий слой образуется при Ам < А (рис. 334, в), так как в контактном слое полупроводника наблюдается избыток отрицательных ионов акцепторных примесей и недостаток основных носителей то­ка—дырок в валентной зоне. Если же Ам > А (рис. 334, б), то в контактном слое полупроводника р-типа наблюдается избыток основных носителей тока — дырок в ва­лентной зоне, контактный слой обладает повышенной проводимостью.



Исходя из приведенных рассуждений, видим, что запирающий контактный сдой возникает при контакте донорного полупроводника с меньшей работой выхода, чем у металла (см. рис. 333, б), и у акцепторного — с большей работой выхода, чем у металла (рис. 333, в).

Запирающий контактный слой обладает односторонней (вентильной) проводимо­стью, т. е. при приложении к контакту внешнего электрического поля он пропускает ток практически только в одном направлении: либо из металла в полупроводник, либо из полупроводника в металл. Это важнейшее свойство запирающего слоя объясняется зависимостью его сопротивления от направления внешнего поля.

Если направления внешнего и контактного полей противоположны, то основные носители тока втягиваются в контактный слой из объема полупроводника; толщина контактного слоя, обедненного основными носителями тока, и его сопротивление уменьшаются. В этом направлении, называемом пропускным, электрический ток может проходить через контакт металл — полупроводник. Если внешнее поле совпадает по знаку с контактным, то основные носители тока будут перемещаться от границы с металлом; толщина обедненного слоя возрастает, возрастает и его сопротивление. Очевидно, что в этом случае ток через контакт отсутствует, выпрямитель заперт — это запорное направление. Для запирающего слоя на границе металла с полупроводником n-типа (Aм>А) пропускным является направление тока из металла в полупроводник, а для запирающего слоя на границе металла с полупроводником р-типа (Aм<А) — из полупроводника в металл.


Контакт электронного и дырочного полупроводников (p-n-переход)


Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом (или p-n-переходом). Эти переходы имеют большое практическое значение, являясь основой работы многих полупроводниковых приборов. p-n-Переход нельзя осущест­вить просто механическим соединением двух полупроводников. Обычно области раз­личной проводимости создают либо при выращивании кристаллов, либо при соответ­ствующей обработке кристаллов. Например, на кристалл германия n-типа накладыва­ется индиевая «таблетка» (рис. 335, а). Эта система нагревается примерно при 500°С в вакууме или в атмосфере инертного газа; атомы индия диффундируют на некоторую глубину в германий. Затем расплав медленно охлаждают. Так как германий, содер­жащий индий, обладает дырочной проводимостью, то на границе закристаллизовав­шегося расплава и германия n-типа образуется p-n-переход (рис. 335, б).

рис. 335


Рассмотрим физические процессы, происходящие в p-n-переходе (рис. 336). Пусть донорный полупроводник (работа выхода — Аn, уровень Ферми — EFn) приводится в контакт (рис. 336, б) с акцепторным полупроводником (работа выхода — Ар, уровень Ферми — ЕF0 ). Электроны из n-полупроводника, где их концентрация выше, будут диффундировать в p-полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении — в направлении рп.

В n-полупроводнике из-за ухода электронов вблизи границы остается нескомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов. В p-полупроводнике из-за ухода дырок вблизи границы образуется отрица­тельный объемный заряд неподвижных ионизованных акцепторов (рис. 336, а). Эти объемные заряды образуют у границы двойной электрический слой, поле которого, направленное от n-области к p-области, препятствует дальнейшему переходу электро­нов в направлении пр и дырок в направлении рп. Если концентрации доноров и акцепторов в полупроводниках n- и p-типа одинаковы, то толщины слоев d1 и d2 (рис. 336, в), в которых локализуются неподвижные заряды, равны (d1=d2).

При определенной толщине p-n-перехода наступает равновесное состояние, харак­теризуемое выравниванием уровней Ферми для обоих полупроводников (рис. 336, в). В области p-n-перехода энергетические зоны искривляются, в результате чего возника­ют потенциальные барьеры как для электронов, так и для дырок. Высота потенциаль­ного барьера е определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную е, причем подъем происходит на толщине двойного слоя d.

рис. 336


Толщина d слоя p-n-перехода в полупроводниках составляет примерно 10–6—10–7 м, а контактная разность потенциалов — десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре в несколько тысяч градусов, т. е. при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением).

Сопротивление запирающего слоя можно изменить с помощью внешнего элект­рического поля. Если приложенное к p-n-переходу внешнее электрическое поле направ­лено от n-полупроводника к p-полупроводнику (рис. 337, a), т. е. совпадает с полем контактного слоя, то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике от границы p-n-перехода в противоположные стороны. В резуль­тате запирающий слой расширится и его сопротивление возрастет. Направление вне­шнего поля, расширяющего запирающий слой, называется запирающим (обратным). В этом направлении электрический ток через p-n-переход практически не проходит. Ток в запирающем спое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в p-полупроводнике и дырок в n-полупроводнике).

Если приложенное к p-n-переходу внешнее электрическое поле направлено проти­воположно полю контактного слоя (рис. 337, б), то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике к границе p-n-перехода навстречу друг другу. В этой области они рекомбинируют, толщина контактного слоя и его сопротив­ление уменьшаются. Следовательно, в этом направлении электрический ток проходит сквозь p-n-переход в направлении от p-полупроводника к n-полупроводнику; оно назы­вается пропускным (прямым).

Таким образом, p-n-переход (подобно на контакте металл — полупроводник) об­ладает односторонней (вентильной) проводимостью.

На рис. 338 представлена вольт-амперная характеристика p-n-перехода. Как уже указывалось, при пропускном (прямом) напряжении внешнее электрическое поле спо­собствует движению основных носителей тока к границе p-n-перехода (см. рис. 337, б). В результате толщина контактного слоя уменьшается. Соответственно уменьшается и сопротивление перехода (тем сильнее, чем больше напряжение), а сила тока становит­ся большой (правая ветвь на рис. 338). Это направление тока называется прямым.

При запирающем (обратном) напряжении внешнее электрическое поле препятству­ет движению основных носителей тока к границе p-n-перехода (см. рис. 337, а) и способ­ствует движению неосновных носителей тока, концентрация которых в полупровод­никах невелика. Это приводит к увеличению толщины контактного слоя, обедненного основными носителями тока. Соответственно увеличивается и сопротивление перехода. Поэтому в данном случае через p-n-переход протекает только небольшой ток (он называется обратным), полностью обусловленный неосновными носителями тока (ле­вая ветвь рис. 338). Быстрое возрастание этого тока означает пробой контактного слоя и его разрушение. При включении в цепь переменного тока p-n-переходы действуют как выпрямители.





рис. 338

Полупроводниковые диоды и триоды (транзисторы)


Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично дейст­вию двухэлектродной лампы—диода (см. §105). Поэтому полупроводниковое устройство, содержащее один p-n-переход, называется полупроводниковым (кристаллическим) диодом. Полупроводниковые диоды по конструкции делятся на точечные и плоскостные.

В качестве примера рассмотрим точечный германиевый диод (рис. 339), в котором тонкая вольфрамовая проволока 1 прижимается к п-германию 2 остриём, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия Аl в Gе и образуется слой германия, обогащенный алюминием и обладающий p-проводимостью. На границе этого слоя образуется p-n-переход, обладающий высоким коэффициентом выпрямле­ния. Благодаря малой емкости контактного слоя точечные диоды применяются в каче­стве детекторов (выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.

Принципиальная схема плоскостного меднозакисного (купоросного) выпрямителя дана на рис. 340. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu2О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Сu2О, прилегающая к меди и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu2О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислоро­дом, — дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu2О к Сu (pn).

Технология изготовления германиевого плоскостного диода описана в § 249 (см. рис. 325). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают рядом преиму­ществ по сравнению с электронными лампами (малые габаритные размеры, высокие к.п.д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувст­вительны к температуре, поэтому интервал их рабочих температур ограничен (от –70 до +120°С). p-n-Переходы обладают не только прекрасными выпрямляющими свойст­вами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Браттейном и У. Шокли; Нобелевская премия 1956 г.).

Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупрово­дниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50—80°С). Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.


Для примера рассмотрим принцип работы плоскостного триода р-п-р, т. е. триода на основе n-полупроводника (рис. 341). Рабочие «электроды» триода, которыми явля­ются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов — металлических проводников. Между эмиттером и ба­зой прикладывается постоянное смещающее напряжение в прямом направлении, а меж­ду базой и коллектором — постоянное смещающее напряжение в обратном направле­нии. Усиливаемое переменное напряжение подается на входное сопротивление Rвх, а усиленное — снимается с выходного сопротивления Rвых.

Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» — инжекцией — в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектирован­ных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, всякое изменение тока в цепи эмит­тера вызывает изменение тока в цепи коллектора.

Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении — переменное напряжение. Величина усиления зависит от свойств р-п-переходов, нагрузочных сопротивлений и напряжения батареи Бк. Обычно Rвых>>Rвх, поэтому Uвых значительно превышает входное напряжение Uвх (усиление может достигать 10 000). Так как мощность пере­менного тока, выделяемая в Rвых, может быть больше, чем расходуемая в цепи эмиттера, то транзистор даст и усиление мощности. Эта усиленная мощность появля­ется за счет источника тока, включенного в цепь коллектора.

Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряже­нием на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.

Принцип работы транзистора n-p-n-типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, большие к.п.д. и срок службы, отсутствие накаливаемого катода (поэтому потребление меньшей мощности), отсутствие необ­ходимости в вакууме и т. д.) транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.



Достарыңызбен бөлісу:
1   ...   11   12   13   14   15   16   17   18   ...   31




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет