Вследствие возмущающего действия, оказываемого на вращение Земли телами Солнечной системы, ось вращения Земли совершает в пространстве очень сложное движение. Земля имеет форму сфероида, и поэтому различные части сфероида притягиваются Солнцем и Луной неравномерно.
1. Ось медленно описывает конус, оставаясь всё время наклонённой к плоскости движения Земли под углом около 66º,5. Это движение называется прецессионным, период его около 26 000 лет. Оно определяет среднее направление оси в пространстве в различные эпохи.
2. Ось вращения Земли совершает различные мелкие колебания около своего среднего положения, главные из которых имеют период 18,6 года, (этот период есть период обращения узлов лунной орбиты, так как нутация есть следствие действия притяжения Луны на Землю) и называются нутацией земной оси. Нутационные колебания возникают, потому что прецессионные силы Солнца и Луны непрерывно меняют свою величину и направление. Они = 0, когда Солнце и Луна находятся в плоскости экватора Земли и достигают максимума при наибольшем удалении от него. Истинный полюс мира вследствие нутации описывает вокруг среднего полюса сложную кривую. Его движение на небесной сфере совершается приблизительно по эллипсу, большая полуось которого равна 18",4, а малая 13",7. Вследствие прецессии и нутации взаимное расположение полюсов мира и полюсов эклиптики непрерывно изменяется.
3. Притяжение планет мало, чтобы вызывать изменения положений земной оси. Но планеты влияют на положение земной орбиты. Изменения положений плоскости эклиптики под воздействием притяжения планет называется планетной прецессией.
Полюс мира, определяемый средним направлением оси вращения Земли, т.е. обладающий только прецессионным движением, называется средним полюсом мира. Истинный полюс мира учитывает и нутационные движения оси. Средний полюс мира вследствие прецессии за 26 000 лет описывает около полюса эклиптики окружность радиусом 23º,5. За один год перемещение среднего полюса мира на небесной сфере составляет около 50",3. На такую же величину перемещаются на запад и равноденственные точки, двигаясь навстречу видимому годовому движению Солнца. Это явление называется предварением равноденствий. Вследствие этого Солнце попадает в равноденственные точки раньше, чем на то же самое место на фоне звёзд. Полюс мира описывает незамыкающийся круг на небесной сфере. 2000 лет до н.э. полярной звездой была Дракона, через 12 000 лет полярной станет Лиры. В начале нашей эры точка весеннего равноденствия находилась в созвездии Овна, а точка осеннего равноденствия в созвездии Весов. Сейчас точка весеннего равноденствия находится в созвездии Рыб, а осеннего в созвездии Девы.
Прецессионное движение полюса мира вызывает изменение координат звёзд с течением времени. Влияние прецессии на координаты:
d/dt = m + n sin tg ,
d/dt = n sin ,
где d/dt, d/dt - изменения координат за год, m - годичная прецессия по прямому восхождению, n - годичная прецессия по склонению.
Из-за непрерывного изменения экваториальных координат звёзд, происходит медленное изменение вида звёздного неба для данного места на Земле. Некоторые невидимые ранее звёзды будут восходить и заходить, а некоторые видимые - станут невосходящими. Так, через несколько тысяч лет в Европе можно будет наблюдать Южный Крест, но нельзя будет увидеть Сириус и часть созвездия Ориона.
Прецессия была открыта Гиппархом и объяснена И. Ньютоном.
Задача N тел.
Задача определения четырёх и более тел, притягивающих друг друга по закону Ньютона, ещё более сложна, чем задача трёх тел и в общем виде до сих пор не решена.
Задача N тел в общем виде формулируется следующим образом: “В пустом пространстве помещено N свободных материальных точек, которые притягиваются друг к другу по закону Ньютона. Заданы их начальные координаты и начальные скорости. Определить последующее движение этих точек”.
Для исследования движений N тел применяется метод вычисления возмущений, позволяющий найти приближённое решение задачи. Сейчас существует целый ряд методов для приближённого решения задачи, позволяющих для каждой конкретной системы тел с заданными конкретными начальными условиями построить траектории движения с любой нужной для практики точностью для любого ограниченного отрезка времени.
На ЭВМ было промоделировано движение пяти внешних планет Солнечной системы за 400 лет - с 1653 по 2060 год. Результаты вычислений совпали с данными наблюдений. Однако конкретные численные методы не могут дать ответы на многие вопросы качественного характера, например:
- Будет ли одно из тел всегда оставаться в некоторой области пространства или сможет удалиться в бесконечность?
- Может ли расстояние между какими-либо двумя из этих тел неограниченно убывать, или, напротив, это расстояние будет заключено в определённых пределах?
- Распадётся ли когда-нибудь Солнечная система, если считать, что она состоит из тел, движение которых возмущается малыми силами со стороны всех остальных небесных тел?
Пьер Симон Лаплас в 1799 - 1825 гг. решал ограниченную задачу о движении планет и их спутников под действием силы тяготения Солнца и их взаимного гравитационного воздействия. Лаплас учёл движения 18 тел. Он считал, что точное движение планет временами нарушается и необходимо внешнее вмешательство, чтобы восстановить порядок. В.И. Арнольд доказал несколько теорем, по которым следует, что Солнечная система не распадётся ещё многие миллионы лет.
Открытие новых планет.
В 1781 году Вильям Гершель открыл новую большую планету Уран, которую раньше принимали за звезду. К 1840 году стало ясно, что орбита Урана отличается от предсказанной по теории Ньютона. В орбите были заметны отклонения от теоретически вычисленной траектории. Было сделано предположение, что, движение Урана возмущает какое-то массивное тело, находящееся за его орбитой.
Ж.Ж. Леверье и Дж.К. Адамс независимо друг от друга вычислили положение этого тела. Адамс дал свои вычисления в Гринвичскую и Кембриджскую обсерватории, но на них не обратили должного внимания. Леверье сообщил о своём открытии в Берлинскую обсерваторию Иоганну Готфриду Галле. Он сразу начал поиски объекта и обнаружил его на расстоянии 1º от вычисленного. Это оказалась планета Нептун.
В 80-х годах XX столетия на ЭВМ было промоделировано движение пяти внешних планет Солнечной системы за 400 лет - с 1653 по 2060 год. Результаты показали, что за орбитой Плутона нет никакой планеты, заметно возмущающей орбиты уже известных планет. Однако, сам Плутон почти не влияет на орбиту Нептуна из-за своей малой массы. Если за орбитой Плутона находятся такие же маломассивные планеты, то их почти невозможно обнаружить. Возможно, что существует массивное тело, движущееся по сильно вытянутой эллиптической орбите, период обращения которого значительно превосходит рассмотренные 400 лет. Существует предположение, что это тело, находясь на расстоянии около 30 тыс. а.е. от Солнца, имея массу сравнимую с массой Юпитера, постоянно выбивает кометы из Облака Оорта, заставляя их двигаться к центру Солнечной системы.
Контрольные вопросы:
-
Какие существуют методы определения масс небесных тел?
-
Можно ли по третьему закону Кеплера найти массу планеты, у которой нет спутника?
-
Что такое прилив?
-
Как часто на Земле бывают приливы?
-
Что такое прикладной час?
-
Какая максимальная высота приливной волны?
-
Чем объясняются приливы и отливы?
-
Кто впервые правильно объяснил явление приливов и отливов?
-
Что такое прецессия?
-
Каков период прецессии?
-
Что такое нутация?
-
Каков период нутации?
-
Что такое предварение равноденствий?
-
Почему прецессия приводит к изменению экваториальных координат?
-
Где будет Северный полюс мира через 12 тыс. лет?
-
Как формулируется задача N тел?
-
Какие есть трудности при решении задачи N тел?
-
Какая планета была открыта с помощью учета возмущений в движении другой планеты?
-
Существуют ли массивные планеты за орбитой Нептуна?
Задачи:
1. Вычислить массу Нептуна относительно массы Земли, зная, что его спутник отстоит от центра планеты на 354 тыс. км и период обращения равен 5 суткам 21 часу.
Ответ: 17,1 массы Земли.
2. Радиус Марса меньше радиуса Земли в 1,88 раза, а средняя плотность меньше в 1,4 раза. Определите ускорение силы тяжести на поверхности Марса, если ускорение силы тяжести на поверхности Земли равно 9,81 м/с2.
Ответ: gМ 3,6 м/с2.
3. Оцените массу Сатурна, зная, что спутник его Титан обращается вокруг планеты с периодом 15,9 сут на среднем расстоянии 1220 тыс. км. Для Луны эти величины равны соответственно 27,3 сут и 384 тыс. км.
Ответ: Масса планеты Сатурн составляет примерно 95 масс Земли.
4. Определите массу планеты Плутон (в массах Земли), зная, что ее спутник Харон обращается вокруг планеты с периодом 6,4 сут на среднем расстоянии 19,6 тыс. км. Для Луны эти величины равны соответственно 27,3 сут и 384 тыс. км.
Ответ: Масса планеты Плутон составляет 0,0024 масс Земли.
5. Путешественники заметили, что по местному времени затмение Луны началось в 5 ч 13 мин, тогда как по астрономическому календарю это затмение должно было состояться в 3 ч 15 мин по гринвичскому времени. Какова долгота их местонахождения?
6. Какое полное затмение (солнечное или лунное) продолжительнее. Почему?
7. Обычно полное солнечное затмение наблюдается в полосе шириной около 200 км и протяженностью приблизительно 10 тыс. км. В среднем на Земле происходит одно полное затмение в год. Оцените, через сколько лет затмение повторяется в одном и том же месте.
8. Полным или кольцеобразным будет для наблюдателя, находящегося на Юпитере, затмение Солнца спутником планеты Ганимедом? Диаметр Ганимеда равен 5000 км, радиус орбиты — 1,07106 км, радиус Солнца — 696000 км.
9. Представьте, что сегодня наблюдалось солнечное затмение. Когда примерно можно наблюдать ближайшее лунное затмение?
А. Через неделю.
Б. Через две недели.
В. Через месяц.
Г. Через полгода.
Литература:
-
Астрономический календарь. Постоянная часть. М. Наука. 1981.
-
Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.
-
Воронцов-Вельяминов Б.А. Сборник задач и практических упражнений по астрономии. М. Наука. 1974.
-
Галузо И.В., Голубев В.А., Шимбалев А.А. Планирование и методика проведения уроков. Астрономия в 11 классе. Минск. Аверсэв. 2003.
-
Шимбалев А.А. Планеты Солнечной системы. Мн. БГПУ., 2009.
Тема №5
Атмосфера Солнца
Вопросы программы:
-
Химический состав солнечной атмосферы;
-
Вращение Солнца;
-
Потемнение солнечного диска к краю;
-
Внешние слои солнечной атмосферы: хромосфера и корона;
-
Радио- и рентгеновское излучение Солнца.
Краткое содержание:
Химический состав солнечной атмосферы;
В видимой области излучение Солнца имеет непрерывный спектр, на фоне которого заметно несколько десятков тысяч тёмных линий поглощения, называемых фраунгоферовыми. Наибольшей интенсивности непрерывный спектр достигает в синезелёной части, у длин волн 4300 - 5000 А. В обе стороны от максимума интенсивность спектра убывает.
Внеатмосферные наблюдения показали, что Солнце излучает в невидимые коротковолновую и длинноволновую области спектра. В более коротковолновой области спектр резко меняется. Интенсивность непрерывного спектра быстро падает, а тёмные фраунгоферовы линии сменяются эмиссионными.
Самая сильная линия солнечного спектра находится в ультрафиолетовой области. Это резонансная линия водорода Lс длиной волны 1216 А. В видимой области наиболее интенсивны резонансные линии Н и К ионизованного кальция. После них по интенсивности идут первые линии бальмеровской серии водорода H, H, H, затем резонансные линии натрия, линии магния, железа, титана, других элементов. Остальные многочисленные линии отождествляются со спектрами около 70 известных химических элементов из таблицы Д.И. Менделеева. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, железа, кальция, др. элементов.
Преобладающим элементом на Солнце является водород. На его долю приходится 70% массы Солнца. Следующим является гелий - 29% массы. На остальные элементы вместе взятые приходится чуть больше 1%.
Вращение Солнца
Наблюдения отдельных деталей на солнечном диске, а также измерения смещений спектральных линий в различных его точках говорят о движении солнечного вещества вокруг одного из солнечных диаметров, называемого осью вращения Солнца.
Плоскость, проходящая через центр Солнца и перпендикулярная к оси вращения, называется плоскостью солнечного экватора. Она образует с плоскостью эклиптики угол в 7015’ и пересекает поверхность Солнца по экватору. Угол между плоскостью экватора и радиусом, проведённым из центра Солнца в данную точку на его поверхности называется гелиографической широтой.
Угловая скорость вращения Солнца убывает по мере удаления от экватора и приближения к полюсам.
В среднем = 14º,4 - 2º,7 sin2B, где В - гелиографическая широта. Угловая скорость измеряется углом поворота за сутки.
Сидерический период экваториальной области равен 25 суток, вблизи полюсов он достигает 30 суток. Вследствие вращения Земли вокруг Солнца его вращение кажется более замедленным и равно 27 и 32 суток соответственно (синодический период).
Потемнение солнечного диска к краю
Фотосферой называется основная часть солнечной атмосферы, в которой образуется видимое излучение, имеющее непрерывный характер. Таким образом, она излучает практически всю приходящую к нам солнечную энергию. Фотосфера - это тонкий слой газа протяжённостью в несколько сотен километров, достаточно непрозрачный. Фотосфера видна при непосредственном наблюдении Солнца в белом свете в виде кажущейся его “поверхности”.
При наблюдении солнечного диска заметно его потемнение к краю. По мере удаления от центра, яркость убывает очень быстро. Этот эффект объясняется тем, что в фотосфере происходит рост температуры с глубиной.
Различные точки солнечного диска характеризуют углом , который составляет луч зрения с нормалью к поверхности Солнца в рассматриваемом месте. В центре диска этот угол равен 0, и луч зрения совпадает с радиусом Солнца. На краю = 90 и луч зрения скользит вдоль касательной к слоям Солнца. Большая часть излучения некоторого слоя газа исходит от уровня, находящегося на оптической глубине 1. Когда луч зрения пересекает слои фотосферы под большим углом , оптическая глубина 1 достигается в более внешних слоях, где температура меньше. Вследствие этого интенсивность излучения от краёв солнечного диска меньше интенсивности излучения его середины.
Уменьшение яркости солнечного диска к краю в первом приближении может быть представлено формулой:
I () = I0(1 - u + cos ),
где I () - яркость в точке, в которой луч зрения составляет угол с нормалью, I0 - яркость излучения центра диска, u - коэффициент пропорциональности, зависящий от длины волны.
Визуальные и фотографические наблюдения фотосферы позволяют обнаружить её тонкую структуру, напоминающую тесно расположенные кучевые облака. Светлые округлые образования называются гранулами, а вся структура - грануляцией. Угловые размеры гранул составляют не более 1″ дуги, что соответствует 700 км. Каждая отдельная гранула существует 5-10 минут, после чего она распадается и на её месте образуются новые гранулы. Гранулы окружены тёмными промежутками. В гранулах вещество поднимается, а вокруг них опускается. Скорость этих движений 1-2 км/с.
Грануляция - проявление конвективной зоны, расположенной под фотосферой. В конвективной зоне происходит перемешивание вещества в результате подъёма и опускания отдельных масс газа.
Причиной возникновения конвекции в наружных слоях Солнца являются два важных обстоятельства. С одной стороны, температура непосредственно под фотосферой очень быстро растёт вглубь и лучеиспускание не может обеспечить выхода излучения из более глубоких горячих слоёв. Поэтому энергия переносится самими движущимися неоднородностями. С другой стороны, эти неоднородности оказываются живучими, если газ в них не полностью, а лишь частично ионизован.
При переходе в нижние слои фотосферы газ нейтрализуется и не способен образовывать устойчивые неоднородности. поэтому в самих верхних частях конвективной зоны конвективные движения тормозятся и конвекция внезапно прекращается. Колебания и возмущения в фотосфере порождают акустические волны. Наружные слои конвективной зоны представляют своеобразный резонатор в котором возбуждаются 5-минутные колебания в виде стоячих волн.
Внешние слои солнечной атмосферы: хромосфера и корона
Плотность вещества в фотосфере быстро уменьшается с высотой и внешние слои оказываются сильно разреженными. В наружных слоях фотосферы температура достигает 4500 К, а потом снова начинает расти. Происходит медленный рост температуры до нескольких десятков тысяч градусов, сопровождающийся ионизацией водорода и гелия. Эта часть атмосферы называется хромосферой. В верхних слоях хромосферы плотность вещества достигает 10-15 г/см3.
В 1 см3 этих слоёв хромосферы содержится около 109 атомов, но температура возрастает до миллиона градусов. Здесь начинается самая внешняя часть атмосферы Солнца, которая называется солнечной короной. Причиной разогрева самых внешних слоёв солнечной атмосферы является энергия акустических волн, возникающих в фотосфере. При распространении вверх, в слои с меньшей плотностью, эти волны увеличивают свою амплитуду до нескольких километров и превращаются в ударные волны. В результате возникновения ударных волн происходит диссипация волн, которая увеличивает хаотические скорости движения частиц и происходит рост температуры.
Интегральная яркость хромосферы в сотни раз меньше чем яркость фотосферы. Поэтому для наблюдения хромосферы необходимо применение специальных методов, позволяющих выделить слабое её излучение из мощного потока фотосферной радиации. Наиболее удобными методами являются наблюдения в моменты затмений. Протяжённость хромосферы составляет 12 - 15 000 км.
При изучении фотографий хромосферы видны неоднородности, наиболее мелкие называются спикулами. Спикулы имеют продолговатую форму, вытянуты в радиальном направлении. Длина их составляет несколько тысяч км., толщина около 1 000 км. Со скоростями в несколько десятков км/с спикулы поднимаются из хромосферы в корону и растворяются в ней. Через спикулы происходит обмен вещества хромосферы с вышележащей короной. Спикулы образуют более крупную структуру, называемую хромосферной сеткой, порождённую волновыми движениями, вызванными значительно большими и более глубокими элементами подфотосферной конвективной зоны, чем гранулы.
Корона имеет очень малую яркость, поэтому может наблюдаться лишь во время полной фазы солнечных затмений. Вне затмений она наблюдается с помощью коронографов. Корона не имеет резких очертаний и обладает неправильной формой, сильно меняющейся со временем. Наиболее яркую часть короны, удалённую от лимба не более, чем на 0,2 - 0,3 радиуса Солнца принято называть внутренней короной, а остальную, весьма протяжённую часть - внешней короной. Важной особенностью короны является её лучистая структура. Лучи бывают различной длины, вплоть до десятка и более солнечных радиусов. Внутренняя корона богата структурными образованиями, напоминающими дуги, шлемы, отдельные облака.
Излучение короны является рассеянным светом фотосферы. Этот свет сильно поляризован. Такую поляризацию могут вызвать только свободные электроны. В 1 см3 вещества короны содержится около 108 свободных электронов. Появление такого количества свободных электронов должно быть вызвано ионизацией. Значит в короне в 1 см3 содержится около 108 ионов. Общая концентрация вещества должна быть 2 . 108. Солнечная корона представляет собой разреженную плазму с температурой около миллиона кельвинов. Следствием высокой температуры является большая протяжённость короны. Протяжённость короны в сотни раз превышает толщину фотосферы и составляет сотни тысяч километров.
Радио- и рентгеновское излучение Солнца
Солнечная корона полностью прозрачна для видимого излучения, но плохо пропускает радиоволны, которые испытывают в ней сильное поглощение и преломление. На метровых волнах яркостная температура короны достигает миллиона градусов. На более коротких волнах она уменьшается. Это связано с увеличением глубины, откуда выходит излучение, из-за уменьшения поглощающих свойств плазмы.
Радиоизлучение солнечной короны прослежено на расстояния в несколько десятков радиусов. Это возможно благодаря тому, что Солнце ежегодно проходит мимо мощного источника радиоизлучения - Крабовидной туманности и солнечная корона затмевает его. Происходит рассеяние излучения туманности в неоднородностях короны. Наблюдаются всплески радиоизлучения Солнца, вызванные колебаниями плазмы, связанными с прохождениями через неё космических лучей во время хромосферных вспышек.
Рентгеновское излучение изучено при помощи специальных телескопов, установленных на космических аппаратах. Рентгеновское изображение Солнца имеет неправильную форму с множеством ярких пятен и “клочковатой” структурой. Вблизи оптического лимба заметно увеличение яркости в виде неоднородного кольца. Особенно яркие пятна наблюдаются над центрами солнечной активности, в областях, где находятся мощные источники радиоизлучения на дециметровых и метровых волнах. Это означает, что рентгеновское излучение возникает в основном с солнечной короне. Рентгеновские наблюдения Солнца позволяют проводить детальные исследования структуры солнечной короны непосредственно в проекции на диск Солнца. Рядом с яркими областями свечения короны над пятнами обнаружены обширные тёмные области, не связанные ни с какими заметными образованиями в видимых лучах. Они называются корональными дырами и связаны с участками солнечной атмосферы, в которых магнитные поля не образуют петель. Корональные дыры являются источником усиления солнечного ветра. Они могут существовать в течение нескольких оборотов Солнца и вызывать на Земле 27-дневную периодичность явлений, чувствительных к корпускулярному излучению Солнца.
Контрольные вопросы:
-
Какие химические элементы преобладают в солнечной атмосфере?
-
Как можно узнать о химическом составе Солнца?
-
С каким периодом Солнце вращается вокруг своей оси?
-
Совпадает ли период вращения экваториальных и полярных областей Солнца?
-
Что такое фотосфера Солнца?
-
Какое строение имеет Солнечная фотосфера?
-
Чем вызвано потемнение солнечного диска к краю?
-
Что такое грануляция?
-
Что такое солнечная корона?
-
Какова плотность вещества в короне?
-
Что такое солнечная хромосфера?
-
Что такое спикулы?
-
Какова температура короны?
-
Чем объясняется большая температура короны?
-
Каковы особенности радиоизлучения Солнца?
-
Какие области Солнца ответственны за появление рентгеновского излучения?
Литература:
-
Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.
-
Галузо И.В., Голубев В.А., Шимбалев А.А. Планирование и методика проведения уроков. Астрономия в 11 классе. Минск. Аверсэв. 2003.
-
Уипл Ф.Л. Семья Солнца. М. Мир. 1984
-
Шкловский И. С. Звёзды: их рождение, жизнь и смерть. М. Наука. 1984
Тема №6
Достарыңызбен бөлісу: |