14-15 апта. СОӨЖ
Тақырыбы
Тұрақты коэффициентті сызықты жоғарғы ретті біртекті дифференциалдық теңдеулер.
Сағат саны: 2
Мақсаты
Біртекті тұрақты дифференциалдық теңдеулерді шеше білуге үйрету. Характеристикалық теңдеудің әртүрлі шешімдері болған жағдайларда есептерді шешуге үйрету.
8тапсырма. Дифференциалдық теңдеудің жалпы шешімін тап.
8.1.
|
8.2.
|
8.3.
|
8.4.
|
8.5.
|
8.6.
|
8.7.
|
8.8.
|
8.9.
|
8.10.
|
8.11.
|
8.12.
|
8.13.
|
8.14.
|
8.15.
|
8.16.
|
8.17.
|
8.18.
|
8.19.
|
8.20.
|
8.21.
|
8.22.
|
8.23.
|
8.24.
|
8.25.
|
8.26.
|
8.27.
|
8.28.
|
8.29.
|
8.30.
|
|
|
|
Орындауга арналган әдістемелік нұсқау
Коэффициенттері тұрақты жоғарғы ретті біртекті сызықты дифференциалдық теңдеулер .
Сызықты бipтекті pi коэффициенттері тұрақты сандар болатын
, (1)
түріндегі п -шi peтті дифференциалдық теңдеу берілсін.
Бұл теңдеудің дербес шешімдерін у = еkx, k-тұрақты сан, түрінде іздейміз. Онда
, ,
болады. Бұл мәндерді (1)-теңдеуге қойып
теңдігін аламыз. Бұдан еkx ≠ 0 болғандықтан
(2)
шығады. Егер k саны осы алгебралық теңдеудің түбірі болса, онда у = еkx - (1)-дифференциалдық теңдеудің шешімі және керісінше у = еkx -(1)-дифференциалдық теңдеудің шешімі болса, онда k-саны (2)-алгебралық теңдеудің түбірі болатынын көреміз. (2)-алгебралық теңдеу (1)-теңдеуді сипаттаушы теңдеу деп аталады. Сипаттаушы тендеуді алу үшін (1)-дифференциалдық теңдеудегі y(i)- туындыларын сәйкес ki-дәрежелерімен алмастырса болғаны (у ≡ у(0) деп есептелгендіктен y-тi k0=1-ге алмастырады). Kepiciнше (2)-сипаттаушы теңдеу бойынша (1)-біртекті дифференциалдық теңдеуді тұрғызуға болады. (2)-алгебралық теңдеудің түбірлерінің саны еселігімен қоса алғанда n-ге (теңдеудің үлкен дәреже көрсеткішіне) тең екенін білеміз.
1°. Сипаттаушы теңдеудің k1,k2,...,kn түбірлері әр түрлі (өзара тең емес) сандар болсын. Онда келесі n-функциясының:
(3)
әpбipeyi (1)дифференциалдық, теңдеудің дербес шешімі және (3)-функциялары (-∞;+∞) аралығында сызықты тәуелсіз болады, олай болса олар (1)-біртекті дифференциалдық теңдеудің шешімдерінің іргелі жүйесін құрады. Бұл жағдайда (1)-дифференциалдық теңдеудің жалпы шешімін келесі түрде жазылады
Егер рi -коэффициенттері нақты сандар болып (2)-сипаттаушы теңдеудің түбірлерінің ішінде қандай да бip түбір ki комплекс сан болса: ki=α+iβ, онда қалған түбірлердің ішінде оған түйіндес ks=α-iβ комплекс түбip болуы тиіс. -түбіріне -функциясы сәйкес келеді және ол (2) теңдеуінің шешімі болады. Эйлер көрсеткендей комплекс функцияның нақты бөлігі мен жорамал бөлігін бөліп жазайық:
,
.
Лемма: Егер - функциясы нақты айнымалы комплекс функциясы болса, мұндағы -нақты функциялар және қанағаттандырса, онда функциялары да теңдеуін қанағаттандырады.
Осы лемманың негізінде функциялары да (1) теңдеуді қанағаттандырады. Сонда түбіріне екі шешім сәйкес келіп тұр, ал ks-түбірі жаңа шешім тудырмайды. Бұл функциялар жүйесі (-∞;∞) аралығында сызықты тәуелсіз болатынын дәлелдеуге болады.
2°. Сипаттаушы теңдеудің түбірлері әр түрлі емес, олардың арасында өзара тең түбірлері бар болсын: айталық k1 -түбipi m-еселі болсын. Онда бұларға сәйкес функциялар
болады да (6.1)-жүйе сызықты тәуелсіз бола алмайды. Бұл жағдайда функцияларын сәйкес
(4)
функцияларымен алмастырамыз. (4)-функциялардың әpбipeyi (1)-дифференциалдық теңдеудің шешімі және барлық еселі түбірлері осылай етіп алмастырып алынған (4)-жүйе сызықты тәуелсіз болатынын дәлелдеуге болады.
№1 мысал-есеп: теңдеуінің жалпы шешімін табу керек.
Шешуі: Бұл теңдеудің шешімдерін түрінде іздейміз. Осы шешімнің k мәндерін табу үшін оның үшінші реттіге дейінгі туындыларын тауып дифференциалдық теңдеуге апарып қоямыз. Сонда теңдеуін болғандықтан , бөлеміз.
Алынған характеристикалық теңдеудің , k түбірлерін табамыз. Бұл теңдеудің мәндері әр түрлі және нақты болғандықтан жалпы шешім түрінде болады.
№2 мысал-есеп:
теңдеуінің жалпы шешімін табу керек.
Достарыңызбен бөлісу: |