Великие ученые, внесшие вклад в развитие физики в годы великой отечественной войны



Дата13.07.2016
өлшемі402 Kb.
#196622



ВЕЛИКИЕ УЧЕНЫЕ, ВНЕСШИЕ ВКЛАД В РАЗВИТИЕ ФИЗИКИ В ГОДЫ ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ - ВОЙНЫ


УЧЕНИЦЫ 8 «Б» КЛАССА ЛЕВЧУК КСЕНИИ



НИЛЬС БОР



(1885-1962)




Эйнштейн сказал однажды: «Что удивительно привлекает в Боре как ученом -
мыслителе, так это редкий сплав смелости и осторожности; мало кто обладал
такой способностью интуитивно схватывать суть скрытых вещей, сочетая это с
обостренным критицизмом. Он, без сомнения, является одним из величайших
научных умов нашего века».

Датский физик Нильс Хенрик Давид Бор родился 7 октября 1885 года в Копенгагене и был вторым из трех детей Кристиана Бора и Эллен Бор. Его отец был известным профессором физиологии в Копенгагенском университете;

мать происходила из еврейской семьи, хорошо известной в банковских, политических и интеллектуальных кругах. Их дом был центром весьма оживленных дискуссий по животрепещущим научным и философским вопросам, и на протяжении всей своей жизни Бор размышлял над философскими выводами из своей работы. Он учился в Гаммельхольмской грамматической школе в Копенгагене и окончил ее в 1903 году.

Окончив школу, Нильс поступил на естественнонаучный факультет Копенгагенского университета. Здесь его успехи были настольно велики, что уже на втором году обучения профессор мог использовать его в качестве помощника. За экспериментальное исследование поверхностного натяжения воды, которое он провел в 1907 году в лаборатории своего отца на основе работ Рэлея, студент Бор был награжден золотой медалью Копенгагенской Академии наук.

В 1907 году Бор стал бакалавром. Степень магистра он получил в Копенгагенском университете в 1909 году. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием .

В 1911 году Бор получил докторскую степень, а также специальную стипендию для годичной стажировки в Кембридже у самого Дж. Дж. Томсона, наиболее признанного среди физиков того времени. От Томсона Нильс в начале 1912 года отправился в Манчестер к Эрнесту Резерфорду. Там он занимался



вначале теоретическим исследованием торможения альфа- и бета-частиц, а затем приступил к изучению структуры атомов.

Исходя из резерфордовской модели атома, Бор, вернувшись в Копенгаген, в начале 1913 года развил новый взгляд на строение атома водорода. При содействии Резерфорда его работа «О строении атомов и молекул» была опубликована в «Философикал мэгэзин». В этой работе Бор творчески объединил идеи Резерфорда, Планка и Эйнштейна.

Бор понял, что существует противоречие между представлениями Резерфорда о строении атома, с одной стороны, и положениями классической электродинамики, а также определенными экспериментальными данными - с другой. На примере атома водорода Бор констатировал, что излучение электрона, движущегося вокруг ядра, не представляет непрерывного спектра и, значит, не описывается законами классической электродинамики. По этим законам электроны вследствие своего ускоряющегося движения непрерывно теряли бы электромагнитную энергию и должны бы были, в конце концов, упасть на ядро.

Для устранения этого противоречия Бор предпочел опереться на данные эксперимента, а не на положения классической науки, которая не могла здесь предложить никакого объяснения. Бор ввел постулаты, основанные на квантовой теории Планка. Благодаря этому ученому удалось составить более правильный взгляд на строение атомных оболочек по сравнению с «представлениями Резерфорда. В соответствии с постулатами Бора, электрон в свободном атоме водорода может вращаться вокруг ядра не по произвольной траектории, а по такому пути, который не связан с излучением энергии. Образование линейчатого спектра водорода объясняется тем, что электрон, поглощая фотон, переходит на более высокую орбиту. При потере энергии, согласно Бору, электрон вновь переходит на более низкую орбиту. Эта теория объясняла также потерю электронов при образовании положительных ионов.

Ставшая всемирно известной модель атома Бора построена на двух требованиях - «квантовых условиях».

Первое: электроны в атоме вращаются под влиянием кулоновских сил по известным свободным от излучения «квантовым орбитам», соответствующим определенным энергетическим уровням.

Второе: электроны совершают внезапные скачкообразные переходы, «квантовые скачки», между своими свободными от излучения орбитами. Частота колебаний испускаемого при этом света регулируется также квантом действия.

Немедленно оценив важность работы Бора, Резерфорд предложил ему ставку лектора в Манчестерском университете - пост, который Бор занимал с 1914 по 1916 год. В 1916 году он занял пост профессора, созданный для него в Копенгагенском университете, где он продолжал работать над строением атома. В 1920 году Бор основал Институт теоретической физики в Копенгагене. За исключением периода второй мировой войны, когда ученого не было в Дании, он руководил этим институтом до конца своей жизни.

В 1922 году Бор награжден Нобелевской премией по физике «За заслуги в исследовании строения атомов и испускаемого ими излучения».

В тридцатые годы Бор вплотную приступил к изучению свойств ядра. В 1936 году он создал капельную модель ядра, введя в ядерную физику термодинамические понятия. После открытия цепной реакции ученый продолжал совершенствовать теорию деления ядер и эффектов, связанных с этим процессом. Большое значение для развития квантовой электродинамики имели его работы по излучению. Открытие деления накануне второй мировой^ войны немедленно дало пищу для домыслов о том, как с его помощью можно высвобождать колоссальную энергию. Во время визита в Принстон в начале 1939 года Бор определил, что один из обычных изотопов урана, уран-235, является расщепляемым материалом, что оказало существенное влияние на разработку атомной бомбы.

В первые годы войны Бор продолжал работать в Копенгагене над теоретическими деталями деления ядер, в условиях германской оккупации Дании. Однако 29 сентября 1943 года Бора неоднократно информировали о решении немцев арестовать его вместе со всей семьей в связи с предстоящей высылкой датских евреев в Германию. К счастью, ему удалось принять необходимые меры и той же ночью вместе в женой, братом Харальдом и другими членами семьи переправиться в Швецию. Оттуда он вместе с сыном Оге перелетел в Англию в пустом бомбовом отсеке британского военного самолета.

Хотя Бор считал создание атомной бомбы технически неосуществимым, работа по созданию такой бомбы уже начиналась в Соединенных Штатах, и союзникам потребовалась его помощь. В конце 1943 года Нильс и Оге Бор отправились в Лос-Аламос для участия в работе над Манхэттенским проектом. Старший Бор сделал ряд технических разработок при создании бомбы и считался старейшиной среди многих, работавших там ученых; однако его в конце войны крайне волновали последствия применения атомной бомбы в будущем. Он встречался с президентом США Франклином Д. Рузвельтом и премьер-министром Великобритании Уинстоном Черчиллем, пытаясь убедить их быть открытыми и откровенными в Советским Союзом в отношении нового 1 оружия, а также настаивал на установлении системы контроля над вооружениями в послевоенный период. Однако его усилия не увенчались успехом.

После войны Бор вернулся в Институт теоретической физики, который расширился под его руководством. Он помогал основать ЦЕРН (Европейский центр ядерных исследований) и играл активную роль в его научной программе в пятидесятые годы. Он также принял участие в основании Нордического института теоретической атомной физики (Нордита) в Копенгагене -объединенного научного центра Скандинавских государств. В эти годы ученый продолжал выступать в прессе за мирное использование ядерной энергии и предупреждал об опасности ядерного оружия. В 1950 году он послал открытое письмо в ООН повторив свой призыв военных лет к «открытому миру» и международному контролю над вооружениями.

Достигнув возраста обязательной отставки, Бор ушел с поста профессора Копенгагенского университета, но оставался главой Института теоретической физики. В последние годы своей жизни он продолжал вносить свой вклад в развитие квантовой физики и проявлял больший интерес к новой области молекулярной биологии. За свои усилия в этом направлении он получил первую премию «За мирный атом», учрежденную Фондом Форда в 1957 году.

Бор умер 18 ноября 1962 года в своем доме в Копенгагене в результате сердечного приступа. В некрологе советские ученые писали: «В лице Нильса Бора люди потеряли гениального ученого и мыслителя, борца за мир и взаимопонимание между народами, друга всего человечества».

В честь великого ученого советские ученые назвали 105-й химический элемент нильсборием (Ns).



ИГОРЬ ВАСИЛЬЕВИЧ КУРЧАТОВ


(1903-1960)





И.В.Курчатов родился в семье помощника лесничего в Башкирии. В 1909

году семья переехала в Симбирск. В 1912 году Курчатовы перебираются в Симферополь. Здесь мальчик поступает в гимназию. За последние два года единственным баллом в Игоря Курчатова была пятерка. В 1920 году он окончил гимназию с золотой медалью.

В сентябре того же года он поступил на первый курс физико -математического факультета Крымского университета. Здесь он учился настолько хорошо, что в 1923 году завершил четырехлетний курс за три года и блестяще защитил дипломную работу. Молодого выпускника направили преподавателем физики в Бакинский политехнический институт, но он решил еще поучиться сам. Через полгода Курчатов уехал в Петроград и поступил сразу на третий курс кораблестроительного факультета политехнического института. Здесь он начинает заниматься исследованиями. Весной 1925 года, когда занятия в Политехническом институте закончились, Курчатов уезжает в Ленинград в физико - технический институт в лабораторию знаменитого физика Иоффе.

Принятый ассистентом, он получает звание научного сотрудника первого разряда, затем старшего инженера - физика. Наряду с исследовательской работай Курчатов читал специальный курс физики диэлектриков на физико -механическом факультете Ленинградского политехнического института и в Педагогическом институте.

Первой печатной работой в лаборатории диэлектриков оказалось исследование прохождения медленных электронов сквозь тонкие металлические пленки. Уже при решении этой первой задачи проявилась одна из типичных черт Игоря Васильевича - подмечать противоречия и аномалии и выяснять их прямыми опытами.

«Это же свойство, - считает Иоффе, - привело его к открытию сегнетоэлектричества, к поискам механизма выпрямления тока, к изучению нелинейности токов в карборундовых разрядниках к изучению предпробойных токов в стеклах и смолах, униполярности токов в солях, а позже к открытиям в области атомного ядра...»

Талант Игоря Васильевича особенно проявился при открытии сегнетоэлектричества. Некоторые аномалии в диэлектрических свойствах сегнетовой соли были описаны до него. В них Курчатов интуитивно заподозрил проявление каких-то неизвестных свойств в поведении диэлектриков. Вместе с Кобеко он обнаружил, что эти свойства аналогичны магнитным свойствам ферромагнетиков, и назвал такие диэлектрики сегнетоэлектриками.

Опыты Курчатова проведены исключительно четко. Результаты их представленные системой кривых, изображавших зависимости эффекта от силы поля, от температуры, с такой убедительностью демонстрировали открытие, что к ним почти не требовалось пояснений. Таким образом, Курчатовым и его сотрудниками было создано новое направление в физике.

В 1930 году Курчатова назначают заведующим физическим отделом Ленинградского физико - технического института. И в это время он круто меняет сферу своих интересов, начав заниматься атомной физикой. В то время мало кто предполагал, какое важное значение будут иметь эти исследования для обороны страны.

Труд Курчатова и его сотрудников не замедлил принести плоды. Приступив к изучению искусственной радиоактивности, возникающей при облучении ядер нейтронами, или, как тогда называли, к изучению эффектами Ферми, Игорь Васильевич уже в апреле 1935 года сообщил об открытом им вместе с братом Борисом и Л. И. Русиновым новом явлении - изомерии искусственных атомных ядер.

Ядерная изомерия была открыта при исследовании искусственной радиоактивности брома. Дальнейшие исследования показали, что многие атомные ядра способны принимать различные изомерные состояния.

Одновременно с изучением открытой им изомерии Курчатов ведет другие опыты с нейтронами. Вместе в Л. А. Арцимовичем он проводит серию исследований поглощения медленных нейтронов, и они добиваются фундаментальных результатов. Им удается наблюдать захват нейтрона протоном с образованием ядра тяжелого водорода - дейтрона и надежно измерить сечение этой реакции.

Курчатов ищет ответ на главный вопрос: происходит ли размножение нейтронов в различных композициях урана и замедлителя. Эту тонкую ^экспериментальную задачу Курчатов поручил своим молодым сотрудникам Флерову и Петржаку, и они блестяще ее выполнили.

В начале 1940 года Флеров с Петржаком подали краткое сообщение об открытом ими новом явлении - самопроизвольном делении урана - в американский журнал «Физикал ревью», в котором печаталось большинство сообщений об уране. Письмо было опубликовано, но проходили неделя за неделей, а отклика все не было. Американцы засекретили все свои работы по атомному ядру. Мир вступил во вторую мировую войну.
Намеченная Курчатовым программа научных работ была прервана и вместо ядерной физики он начинает заниматься разработкой систем размагничивания боевых кораблей. Созданная его сотрудниками установка позволила защитить военные корабли от немецких магнитных мин.

Только в 1943 году, когда будущий академик Г. Флеров написал письмо самому Сталину, исследования атомной энергии были возобновлены. В том же году Игорь Васильевич возглавил советский атомный проекм.

Научная работа по созданию атомного оружия быстро расширялась. 1945 год ознаменовался пуском циклотрона, чудом построенного всего лишь за год. Вскоре был получен первый поток быстрых протонов. Курчатов собирает у селя дома участников его пуска и поднимает бокал за первую победу нового коллектива.

Планы института расширяются, силы его быстро растут. Проектируются новые здания и для крупнейшего циклотрона, и для экспериментов по созданию уран-графитового котла, разделению изотопов и для проведения других исследований.

До войны расцвел талант Курчатова - экспериментатора, в этот период он предстает как организатор науки большого, невиданного в довоенное время масштаба. Курчатов полон неистощимой энергии. Окружающие изнемогают от «курчатовского» темпа работы, он же не проявляет признаков утомления. Обладая редким обаянием, он быстро приобретает друзей среди руководителей промышленности и армии.

Курчатов, попав в новую для него вреду руководителей промышленности, не переставал быть физиком-экспериментатором. Все направления исследований развиваются в разных институтах страны, но важнейшие, узловые вопросы Курчатов решает сам. Сам строит уран-графитовый котел: у себя в Лаборатории №2 вместе с братом Борисом получает первые весовые порции плутония, здесь 1же разрабатывает методы диффузионного и электромагнитного разделения изотопов урана.

Испытание было намечено на рассвет 29 августа 1949 года. Физики, создатели бомбы, увидев ослепительный свет, ярче, чем в самый яркий солнечный день, и грибообразное облако, уходящее в стратосферу, с облегчением вздохнули. Свои обязательства они выполнили.

Почти через четыре года - под утро 12 августа 1953 года еще до восхода солнца над полигоном раздался сокрушительный термоядерный взрыв. Прошло успешное испытание теперь уже первой в мире водородной бомбы. Еще в 1949 году Курчатов начал работать над проектом атомной электростанции. Атомная электростанция - вестник мирного использования атомной энергии. Проект и строительство ее были переданы в институт, которым руководил Д. И. Блохинцев в Обнинске под Москвой. Курчатов все время следил за осуществлением строительства, проверял, помогал. Проект был успешно закончен. 27 июля 1954 года наша атомная электростанция стала первой в мире!

Сенсационным стало выступление Курчатова на международной конференции в Англии, где он рассказывал о советской программе использования ядерной энергии в мирных целях.

Теперь перед ученым встала новая задача - создание электростанции на основе термоядерной управляемой реакции. Но осуществить этот замысел Курчатов не успел. Хотя по его проекту и была построена термоядерная установка «Огра», она стала лишь отдаленным прототипом энергетических машин будущего. Это был, прежде всего, знаменитый «ТОКАМАК» -тороидальный термоядерный магнитогидродинамическии реактор, построенный под руководством академика Л.Арцимовича.

4 февраля 1960 года после встречи с академиком П. Капицей и А.Топчилиным Курчатов поехал в подмосковный санаторий «Барвиха», где находился академик Ю. Харитон. Они долго гуляли по саду, а потом присели на скамейку. Неожиданно в разговоре возникла длинная пауза. Харитон обернулся и увидел, что Курчатов умер. Так оборвался жизненный путь этого крупного ученого и организатора науки.

ЭНРИКО ФЕРМИ

(1901 -1954)


Энрико Ферми родился 29 сентября 1901 года в Риме. Еще в детстве он обнаружил большие способности к математике и физике. Его выдающиеся познания в этих науках, приобретенные в основном в результате самообразования, позволили ему получить в 1918 году стипендию и поступить в Высшую школу при Пизанском университете. Затем, по протекции доцента Физического института Римского университета сенатора Корбино, Энрико получил временную должность преподавателя математики для химиков в Римском университете. В 1923 году он получает командировку в Германию, в Геттинтен, к Максу Борну. Ферми чувствует селя не очень уверенно, и лишь большая моральная поддержка Эренфеста, у которого он был в Лейдене в сентября по декабрь 1924 года, помогла ему поверить в свое призвание физика. По возвращении в Италию Ферми в января 1925 года до осени 1926 года работает во флорентийском университете. Здесь он получает свою первую ученую степень «свободного доцента», и, что самое главное, создает свою знаменитую работу по квантовой статистике. В декабре 1926 года он занял должность профессора вновь учрежденной кафедры теоретической физики в Римском университете. Здесь он организовал коллектив молодых физиков: Разетти, Амальди, Сегре, Понтекорво и других, составивших итальянскую школу современной физики.

Когда в Римском университете в 1927 году была учреждена первая кафедра теоретической физики, Ферми, успевший обрести международный авторитет, был избран ее главой.

В Риме Ферми сплотил вокруг селя несколько выдающихся ученых и основал первую в стране школу современной физики. В 1930 году Ферми был назначен Бенито Муссолини на почетную должность члена вновь созданной Королевской академии Италии.

Весной 1934 года Ферми начал облучать элементы нейтронами. Это было неожиданно и смело. «Я помню, - писал О. Фриш, - что тоя реакция и реакция многих других была скептической: эксперимент Ферми казался бессмысленным, потому что нейтронов было много меньше, чем альфа-частиц».

В первом сообщении, датированном 25 марта 1934 года, Ферми сообщил, что бомбардируя алюминий и фтор проучил изотопы натрия и азота, испускающие электроны. Метод нейтронной бомбардировки оказался очень эффективным, и Ферми писал, что эта высокая эффективность в осуществлении расщепления «вполне компенсирует слабость существующих нейтронных источников по сравнению с источниками альфа-частиц и протонов». Ему удалось этим методом активизировать 47 из шестидесяти восьми изученных элементов.

Резерфорд с большим интересом следил за опытами Ферми. Еще 23 апреля 1934 года он писал ему: «Ваши результаты очень интересны, и нет никакого сомнения, что в дальнейшем нам удастся получить больше сведений о действительном механизме этих превращений».

22 октября 1934 года Ферми сделал фундаментальное открытие. Поместив между источником нейтронов и активируемым серебряным цилиндром парафиновый клин, Ферми заметил, что клин не уменьшает активность нейтронов, а несколько увеличивает ее. Ферми сделал вывод, что это эффект, по-видимому, обусловлен наличием водорода в парафине, и решил проверить, как будет влиять на активность расщепления большое количество водородсодержащих элементов. Проведя опыт сначала в парафине, потом с водой, Ферми констатировал увеличение активности в сотни раз. Опыты Ферми обнаружили огромную эффективность медленных нейтронов.

Но, помимо замечательных экспериментальных результатов, в этом же году Ферми добился замечательных теоретических достижений. Уже в декабрьском номере 1933 года в итальянском научном журнале были опубликованы его предварительные соображения о бета-распаде. В начале 1934 года была опубликована его классическая статья «К теории бета-лучей».

Между тем в Италии все большую силу набирала фашистская диктатура Муссолини. В 1935 году итальянская агрессия против Эфиопии привела к экономическим санкциям со стороны членов Лиги Наций, а в 1936 году Италия заключила союз с нацистской Германией. После принятия итальянским правительством в сентябре 1938 года антисемитских гражданских законов Ферми и его жена, еврейка по национальности, решили эмигрировать в США. Приняв приглашение Колумбийского университета занять должность профессора физики, Ферми информировал итальянские власти о том, что он уезжает в Америку на полгода.


/

В 1938 году Ферми присуждена Нобелевская премия по физике. В решении Нобелевского комитета говорилось, что премия присуждена Ферми «за доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами».

На переговорах в Управление военно-морского флота в 1939 году Ферми впервые упомянул о возможности создания атомного оружия на основе цепной реакции с мощным выделением энергии. Он получил федеральное финансирование для продолжения своих исследований. В ходе работы Ферми и итальянский физик Эмилио Серге бывший его студент установили возможность использования в качестве «взрывчатки» для атомной бомбы тогда еще не открытого элемента плутония. Хотя плутоний, элемент с порядковым номером 239, еще не был известен, оба ученых были убеждены в том, что элемент с таким массовым числом должен расщепляться и может быть получен в урановом реакторе при захвате нейтрона ураном-238.

В 1942 году, когда в США был создан Манхеттенский проект для работ по созданию атомной бомбы, ответственность за исследование цепной реакции и получение плутония была возложена на Ферми, имевшего с юридической точки зрения статус «иностранца - подданного враждебной державы». На следующий год исследования были перенесены из Колумбийского в Чикагский университет, в котором Ферми как председатель подсекции теоретических аспектов Уранового комитета руководил созданием первого в мире ядерного реактора, который строился на площадке для игры в сквош под трибунами университетского футбольного стадиона Срегг-Филд.

Воздвигаемый реактор на техническом жаргоне называли «кучей», так как он был сложен из брусков графита (чистого углерода), которые должны были сдерживать скорость цепной реакции (замедлять нейтроны). Уран и оксид урана размещались между графитовыми брусками. 2 декабря 1942 года кадмиевые регулирующие стержни, поглощающие нейтроны, были медленно выдвинуты, чтобы запустить первую в мире самоподдерживающуюся цепную реакцию.

Несколько позднее Ферми был назначен руководителем отдела современной физики в новой лаборатории, созданной под руководством Роберта Оппенгеймера для создания атомной бомбы в строго засекреченном местечке Лос-Аламосе (штат Нью-Мексико). Ферми и его семья стали гражданами Соединенных Штатов в июле 1944 года, а в следующем месяце они переехали в Лос-Аламос. Ферми был свидетелем первого взрыва атомной бомбы 16 июля 1945 года близ Аламогордо (штат Нью-Мексико). В августе 19745 года атомные бомбы были сброшены на японские города Хиросима и Нагасаки.

В конце войны Ферми вернулся в Чикагский университет, чтобы занять пост профессора физики и стать сотрудником вновь созданного при Чикагском ^университете Института ядерных исследований. Ферми был великолепным педагогом и славился как непревзойденный лектор. Среди его аспирантов можно назвать Марри Гелль-Манна, Янга Чжэньнина, Ли Цзун-дао и Оуэна Чемберлена. После завершения в 1945 году в Чикаго строительства циклотрона (ускорителя частиц) Ферми начал эксперименты по изучению взаимодействия между незадолго до того открытыми пи-мезонами и нейтронами. Ферми принадлежит также теоретическое объяснение происхождения космических лучей и источника их высокой энергии.



Человек выдающегося интеллекта и безграничной энергии, Ферми увлекался альпинизмом, зимними видами спорта и теннисом. Он умер от рака желудка у селя дома в Чикаго вскоре после того, как ему исполнилось пятьдесят три года -30 ноября 1954 года. На следующий год в честь него новый, сотый элемент был назван фермием.








Достарыңызбен бөлісу:




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет