4) Длина окружности и площадь круга.
Теорема. Площадь круга с радиусом r равна
а длина окружности, ограничивающей этот круг, равна , где . Длина неевклидовой окружности не пропорциональна радиусу, как в случае евклидовой геометрии, а растет быстрее. Также площадь неевклидова круга больше площади круга евклидовой плоскости, имеющего тот же радиус.
XI. Вывод.
Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово aprior означает – изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными, свойственными человеческому разуму, его духу. Поэтому, Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.
Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.
Н.И. Лобачевский, как известно, предпринял попытку исследования реального пространства, используя для этой цели астрономические данные. Он надеялся, что с помощью астрономических измерений можно будет обнаружит отклонение геометрии реального пространства от евклидовой. Хотя его вычисления не позволили опытным путем доказать гипотезу о неевклидовости реального пространства, сама гипотеза оказалась гениальным предвидением.
Из выше сказанного вытекает органическая связь между двумя великими достижениями человеческого разума - геометрией Лобачевского и теорией относительности Эйнштейна. При этом геометрия Лобачевского предшествовала теории относительности не только во времени, но и в идейном отношении.
Таким образом, аксиоматический метод и аксиоматические исследования Лобачевского сыграли огромную роль в развитии геометрии как науки, а также нашли свое отражение и в теории познания, т.е. переоценить их значение невозможно.
Достарыңызбен бөлісу: |