Химия. Экология. Медицина



жүктеу 2.07 Mb.
бет49/61
Дата22.02.2016
өлшемі2.07 Mb.
1   ...   45   46   47   48   49   50   51   52   ...   61

ROBERT BOYLE

Inah Kedei Ubi, group 13. Science adviser is Olga Levashova.


Robert Boyle (1627–1691) was born at Lismore Castle, Munster, Ireland, the 14th child of the Earl of Cork. As a young man of means, he was tutored at home and on the Continent. He spent the later years of the English Civil Wars at Oxford, reading and experimenting with his assistants and colleagues. This group was committed to the New Philosophy, which valued observation and experiment at least as much as logical thinking in formulating accurate scientific understanding. In 1660, Boyle played a key role in founding the Royal Society to nurture this new view of science.

Although Boyle’s chief scientific interest was chemistry, his first published scientific work, New Experiments Physico-Mechanicall, Touching the Spring of the Air and Its Effects (1660), concerned the physical nature of air, as displayed in a brilliant series of experiments in which he used an air pump to create a vacuum. Boyle was an advocate of corpuscularism, a form of atomism that was slowly displacing Aristotelian and Paracelsian views of the world. Instead of defining physical reality and analyzing change in terms of Aristotelian substance and form and the classical four elements of earth, air, fire, and water—or the three Paracelsian elements of salt, sulfur, and mercury—corpuscularism discussed reality and change in terms of particles and their motion. Boyle believed that chemical experiments could demonstrate the truth of the corpuscularian philosophy. In this context he defined elements in Sceptical Chemist (1661) as “certain primitive and simple, or perfectly unmingled bodies; which not being made of any other bodies, or of one another, are the ingredients of which all those called perfectly mixt bodies are immediately compounded, and into which they are ultimately resolved.”Boyle’s theories of material change did nothing to eliminate the possibility of the transmutation of base metals to gold that was at the heart of alchemy. Indeed he practiced alchemy until the end of his life, believed that he had witnessed transmutation, and successfully lobbied Parliament to repeal England’s ban on transmutation.Boyle also wrote extensively on natural theology, advocating the notion that God created the universe according to definite laws.



WATSON AND CRICK STRUCTURE OF DNA

Ajisegiri Mayowa Joseph, group 13. Science adviser is Olga Levashova.


In the late nineteenth century, a German biochemist found the nucleic acids, long-chain polymers of nucleotides, were made up of sugar, phosphoric acid, and several nitrogen-containing bases. Later it was found that the sugar in nucleic acid can be ribose or deoxyribose, giving two forms: RNA and DNA. In 1943, American Oswald Avery proved that DNA carries genetic information. He even suggested DNA might actually be the gene. Most people at the time thought the gene would be protein, not nucleic acid, but by the late 1940s, DNA was largely accepted as the genetic molecule. Scientists still needed to figure out this molecule's structure to be sure, and to understand how it worked.

In 1948, Linus Pauling discovered that many proteins take the shape of an alpha helix, spiralled like a spring coil. In 1950, biochemist Erwin Chargaff found that the arrangement of nitrogen bases in DNA varied widely, but the amount of certain bases always occurred in a one-to-one ratio. These discoveries were an important foundation for the later description of DNA.

In the early 1950s, the race to discover DNA was on. At Cambridge University, graduate student Francis Crick and research fellow James Watson (b. 1928) had become interested, impressed especially by Pauling's work. Meanwhile at King's College in London, Maurice Wilkins (b. 1916) and Rosalind Franklin were also studying DNA. The Cambridge team's approach was to make physical models to narrow down the possibilities and eventually create an accurate picture of the molecule. The King's team took an experimental approach, looking particularly at x-ray diffraction images of DNA.

In 1951, Watson attended a lecture by Franklin on her work to date. She had found that DNA can exist in two forms, depending on the relative humidity in the surrounding air. This had helped her deduce that the phosphate part of the molecule was on the outside. Watson returned to Cambridge with a rather muddy recollection of the facts Franklin had presented, though clearly critical of her lecture style and personal appearance. Based on this information, Watson and Crick made a failed model. It caused the head of their unit to tell them to stop DNA research. But the subject just kept coming up.

Franklin, working mostly alone, found that her x-ray diffractions showed that the "wet" form of DNA (in the higher humidity) had all the characteristics of a helix. She suspected that all DNA was helical but did not want to announce this finding until she had sufficient evidence on the other form as well. Wilkins was frustrated. In January, 1953, he showed Franklin's results to Watson, apparently without her knowledge or consent. Crick later admitted, "I'm afraid we always used to adopt -- let's say, a patronizing attitude towards her."

Watson and Crick took a crucial conceptual step, suggesting the molecule was made of two chains of nucleotides, each in a helix as Franklin had found, but one going up and the other going down. Crick had just learned of Chargaff's findings about base pairs in the summer of 1952. He added that to the model, so that matching base pairs interlocked in the middle of the double helix to keep the distance between the chains constant.

Watson and Crick showed that each strand of the DNA molecule was a template for the other. During cell division the two strands separate and on each strand a new "other half" is built, just like the one before. This way DNA can reproduce itself without changing its structure -- except for occasional errors, or mutations.

The structure so perfectly fit the experimental data that it was almost immediately accepted. DNA's discovery has been called the most important biological work of the last 100 years, and the field it opened may be the scientific frontier for the next 100. By 1962, when Watson, Crick, and Wilkins won the Nobel Prize for physiology/medicine, Franklin had died. The Nobel Prize only goes to living recipients, and can only be shared among three winners. Were she alive, would she have been included in the prize?



1   ...   45   46   47   48   49   50   51   52   ...   61


©dereksiz.org 2016
әкімшілігінің қараңыз

    Басты бет