Конспект лекций по дисциплине «Органическая химия» Для студентів напряму підготовки 040106 «Екологія, охорона навколишнього середовища та збалансоване природокористування»


Получение из галогенангидридов кислот



бет29/30
Дата18.07.2016
өлшемі2.14 Mb.
#208342
түріКонспект лекций
1   ...   22   23   24   25   26   27   28   29   30

Получение из галогенангидридов кислот


Аналогичный предыдущему метод получения сложных эфиров заключается в действии спиртов или алкоголятов на галогенангидриды кислот. Например: O O

СH3—CH2—ONa + Cl—C—CH3  CH3—CH2—O—C—CH3 + NaCl

этилат натрия хлорангидрид этилацетат

укс. кислоты;

хлористый ацетил.

Получение из ангидридов кислот


При действии спиртов на ангидриды кислот также достигаются хорошие выходы сложных эфиров:

O O O

СH3—C II II



O + HO—CH3  CH3—C—O—CH3 + CH3—C—OH

CH3—C метиловый метилацетат уксусная к-та

O спирт

укс. ангидрид - (ацетангидрид)



Отдельные представители сложных эфиров


Уксусноэтиловый эфир (этилацетат) CH3COOC2H5.

Представляет собой бесцветную жидкость с характерным запахом. (Ткип. 77,2 оС, d420 =0,901). Довольно трудно растворим в воде. В технике широко используется как растворитель, особенно ВМС –пластмасс, входит в состав лаков и т.п. Применяется как исходное вещество в некоторых синтезах.


Уксусноизоамиловый эфир (изоамилацетат).

Его формула CH3COOCH2CH2CH(CH3)2. Бесцветная жидкость с запахом груш (Ткип. 142 оС, d415=0,8762) почти не растворим в воде. Применяется в качестве растворителя подобно этилацетату, а также как пахучее вещество в пищевой промышленности и в парфюмерии.



Сложные эфиры фруктовых эссенций


Приятным запахом фруктов, цветов и т.п. обладают и другие, получаемые путем синтеза, сложные эфиры. Например:

Эфир формула запах

Муравьиноэтиловый Н-СО-О-С2Н5 рома

(этилформиат)

муравьиноамиловый Н-СО-О-С5Н11 вишен

(амилформиат)

муравьиноизоамиловый Н-СО-О-С5Н11 слив

(изоамилформиат)

масляноэтиловый С3Н7-СО-О-С2Н5 абрикосов

(этилбутират)

масляноизоамиловый С3Н7-СО-О-С5Н11 ананасов

(изоамилбутират)

изовалериановоизоамиловый С4Н9-СО-О-С5Н11 яблок

(изоамилизовалерат)

Многие из таких эфиров входят в состав искусственных фруктовых эссенций. Последние представляют собой часто очень сложные смеси различных как синтетических, так и натуральных веществ. Их применяют в кондитерском производстве, при изготовлении безалкогольных напитков, в парфюмерии. По одной из рецептур в состав абрикосовой эссенции входит 88, а яблочной – 20 различных компонентов. Рецептуры фруктовых эссенций для пищевых продуктов строго регламентируются государственными органами санитарного надзора. Пищевые эссенции должны быть совершенно безвредными.

Эфиры акриловой и метакриловой кислот


В промышленности пластических масс большое значение имеют эфиры непредельных кислот – акриловой и метакриловой. Обычно получают эфиры этих кислот с метиловым спиртом – метилакрилат и метилметакрилат:

О СН3 О

II I II

CH2=CH—C—O—CH3 CH2=C—C—O—CH3

метилакрилат (Ткип. 80 оС) метилметакрилат (Т кип. 100,3 оС)

И тот, и другой - эфиры, легко полимеризуются с разрывом двойной связи и образуются соответственно полиметилакрилат и полиметилметакрилат, которые обычно называют полиакрилатами:

n CH2=CH  ... —CH2—CH—CH2—CH— ...

I I I


COOCH3 COOCH3 COOCH3

метилакрилат полиметилакрилат

СН3 СН3 СН3

I I I


n CH2=C  ... —CH2—C—CH2—C— ...

I I I


COOCH3 COOCH3 COOCH3

метилметакрилат полиметилметакрилат

Образующиеся полимеры бесцветны и прозрачны. Полиметилакрилат используют для производства пленок и листов, в качестве клея (для изготовления без осколочного стекла триплекс), а также в производстве искусственной кожи. Из полиметилметакрилата готовят исключительно ценный синтетический материал – органическое стекло (плексиглас). Последнее превосходит силикатное стекло по прозрачности и по способность пропускать УФ-лучи. Его используют в машино- и приборостроении, при изготовлении различных бытовых и санитарных предметов, посуды, украшений, часовых стекол. Благодаря физиологической индифферентности полиметилметакрилат нашел применение для изготовления зубных протезов и т.п.

Сложные виниловые эфиры


При присоединении кислот к ацетилену образуются эфиры несуществующего в свободном состоянии винилового спирта CH2=CH-OH – сложные виниловые эфиры.

Важнейший в этом ряду винилацетат – эфир винилового спирта и уксусной кислоты. Его получают, например, при пропускании смеси паров уксусной кислоты и ацетилена над ацетатами кадмия и цинка при 180-220 оС:

СН3-СООН + СНСН  СН3-СО-О-СН=СН2

Винилацетат – бесцветная жидкость с Ткип.= 73 оС, d420=0,9342. Легко полимеризуется, образуя синтетический высокополимер – поливинилацетат:

n CH2=CH  .... —CH2—CH—CH2—CH— ...

I O I O I O

O-C-CH3 O-C-CH3 O-C-CH3

винилацетат поливинилацетат

Вследствие низкой термостойкости поливинилацетат как таковой применяется в сравнительно небольших количествах – для изготовления лаков, клеев, искусственной кожи. Большое значение имеют сополимеры винилацетата с хлористым винилом и эфирами акриловой кислоты. Много поливинилацетата подвергают щелочному или кислотному гидролизу для получения поливинилового спирта:

... —CH2—CH—CH2—CH—CH2—CH— ... 

I I I n H2 O (OH- или Н+ )

ОСОСН3 ОСОСН3 ОСОСН3

 ... —CH2—CH—CH2—CH—CH2—CH— ... + nCH3COOH

I I I поливиниловый сп. OH OH OH укс. к-та

Этот процесс может служить примером полимераналогичных превращений.



Отдельные представители предельных одноосных кислот


Муравьиная кислота Н-СООН.

Безводная муравьиная кислота – бесцветная жидкость с резким запахом. Технический продукт представляет собой нераздельно кипящую смесь с водой (Ткип. 107,3 оС), содержащую 77,5 % кислоты.

Как уже указано, муравьиная кислота в отличии от других кислот содержит в соединении с карбоксилом не углеводородный радикал, а водород, и из ее формулы видно, что в ней имеется как бы альдегидная группа С=О, соединенная с гидроксилом. Поэтому, подобно альдегидам муравьиная кислота является сильным восстановителем и окисляется до угольной кислоты, разлагающейся с образованием СО2 и Н2О. В частности, она восстанавливает окись серебра (реакция серебряного зеркала):

Н-С-ОН + Ag2O  2Ag + HO—C—OH  CO2 + H2O

  NH4 OH  

О О


муравьиная кислота угольная кислота

Под действием серной кислоты при нагревании муравьиная к-та разлагается, образуя окись углерода и воды:

Н-СООН  СО + Н2О

В природе свободная муравьиная кислота встречается в выделениях муравьев, в соке крапивы, в поте животных.

В промышленности муравьиную кислоту получают, пропуская окись углерода через нагретую щелочь:

NaOH + CO  H—COONa



муравьинокислый натрий

Из образовавшейся соли муравьиную кислоту выделяют действием разбавленной серной кислоты:

H—COONa + H2SO4  H—COOH + NaHSO4

Применяют муравьиную кислоту при крашении тканей, в качестве восстановителя, в различных органических синтезах.



Уксусная кислота СН3-СООН

Безводная уксусная кислота – бесцветная жидкость с характерным острым запахом, ее иначе называют ледяной уксусная кислотой, т.к. она замерзает уже около +16 оС, образуя кристаллическую массу, напоминающую лед. Обычная крепкая уксусная кислота (уксусная эссенция) содержит 70-80 % кислоты.

Уксусная кислота – одно из наиболее давно известных органических веществ, в древности ее получали в виде уксуса при скисании вина. Она широко распространена в природе, содержится в выделениях животных, в растительных организмах, образуется в результате процессов брожения и гниения в кислом молоке, в сыре, при прогаркании масла и т.п. В промышленности уксусную кислоту получают следующими способами:

Из ацетилена (синтетическая уксусная кислота). Путем гидратации ацетилена по реакции Кучерова получают уксусный альдегид, последний кaталитически окисляют кислородом воздуха в уксусную кислоту. Схема процесса: НОН O2

СНСН  СН3—СН=О  СН3—СООН



ацетилен Hg уксусный альдегид кат. уксусная кислота

Исходным сырым для получения уксусной кислоты по этому способу фактически является уголь (С) и известь (СаО), т.к. из них в электрических печах получают карбид кальция (СаС2), а из последнего действием воды – необходимый для синтеза уксусной кислоты ацетилен. Этим способом в настоящее время получают основное количество уксусной кислоты.



Из этилена (синтетическая уксусная кислота).

PdCl2, CuCl2 O О2

СН2=СН2  СН3—С—Н  СН3—СООН



H2O, O2 кат. уксусная кислота

Уксуснокислым брожением жидкостей, содержащих этиловый спирт (биохимическая уксусная кислота). Под влиянием бактерий Micoderma aceti («уксусного грибка»), зародыши которых в изобилии имеются в воздухе, этиловый спирт в разбавленном водном растворе (до 10%) окисляется кислородом воздуха в уксусную кислоту по следующему суммарному уравнению: О2

СН3—СН2—ОН  СН3—СООН + Н2О

Этот процесс называется уксуснокислым брожением, он происходит при участии вырабатываемого «уксусным грибком» энзима и протекает сложным путем, через ряд промежуточных стадий. Обычно берут вино или пиво, которые при стоянии на воздухе, в результате окисления имеющегося в них спирта, постепенно «скисают» и превращаются в натуральный уксус. Последний содержит 5-8 % уксусной кислоты и в таком виде его употребляют в пищу, а также для приготовления маринадов (консервированных овощей, грибов, рыбы и т.п.). Путем дробной перегонки из уксуса можно получать уксусную эссенцию. Этим способом в настоящее время получают сравнительно небольшое количество уксусной кислоты.

Сухой перегонкой дерева (лесохимическая уксусная кислота). При сухой перегонке дерева одним из продуктов является водный слой, содержащий до 10 % уксусной кислоты. Его нейтрализуют известью, при этом образуется кальциевая соль уксусной кислоты (СН3СОО)2Са (древесный порошок), которую обрабатывают рассчитанным количеством серной кислоты, таким образом, выделяют концентрированную уксусную кислоту.

Окисление углеводородов нефти. Этот способ весьма перспективен и в последние годы приобретает все большее значение. Н.М. Эммануэлем предложен и разработан процесс прямого окисления бутана кислородом воздуха при 145 оС и 50 атм. по схеме:

Р, t, О2

2СН3-СН2-СН2-СН3  2СН3СООН + СН3-СО-СН2-СН3 + 2Н2О



бутан уксусная кислота метилэтилкетон

Выход уксусной кислоты достигает 80 %, побочный продукт – метилэтилкетон. В качестве исходного можно использовать бутан из попутного нефтяного газа.

Уксусная кислота широко применяется в пищевой и химической промышленности, в производстве лекарственных веществ, для получения уксусного ангидрида и т.п. Уксусный ангидрид в свою очередь применяется в производстве пластических масс, искусственного шелка и др.
Бензойная кислота С6Н5СООН.

Кристаллизуется в виде бесцветных пластинок или игл, плавящихся при 121 оС, легко растворимых в спирте и эфире, но трудно растворимых в воде. В настоящее время бензойная кислота довольно широко применяется в промышленности красителей. Бензойная кислота обладает антисентическими свойствами и поэтому используется для консервирования пищевых продуктов. Значительное применение находят также различные производные бензойной кислоты.

С6Н5СООН можно получить:

1. Путем окисления самых различных производных бензола, имеющих одну боковую цепь, например, толуола, этилбензола, бензилового спирта и т.д.: С6Н5СН3  С6Н5СООН

2. Из бензонитрила, который для этого гидролизуют кислотой или щелочью:2 О

С6Н5СN  С6Н5СООН + NH3



Высшие жирные кислоты и их соли (мыла)
Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая (С15Н31СООН) и стеариновая (С17Н35СООН) кислоты. Обе они имеют нормальную (неразветвленную) цепь углеродных атомов и представляют собой бесцветные твердые воскообразные вещества. Эфиры этих кислот с глицерином – основная составная часть различных, главным образом твердых, жиров и масел, пальмитиновая кислота в виде эфиров с высшими спиртами входит в состав пчелиного воска и т. н. спермацета (эфир пальмитиновой кислоты и цетилового спирта С15Н31-СО-ОС16Н33), добываемого из головы морского животного кашалота. Путем гидролиза жиров, масел и воска высшие жирные кислоты могут быть получены в свободном виде. Твердая смесь стеариновой и пальмитиновой кислот, отделяемая путем отжима от жидких кислот, называется стеарином, последний применяют для изготовления свечей.

Пальмитиновая и стеариновая кислоты, так же как и другие представители высших кислот, хорошо растворимы в органических растворителях (спирт, эфир и др.) и совершенно не растворимы в воде. Однако они растворяются в водных растворах щелочей (KOH, NaOH, Na2CO3 и др.), т.к. образуют растворимые в воде соли щелочных металлов. Например:

C15H31COOH + NaOH  C15H31COONa + H2O

пальмитиновая к-та пальмитат натрия

C17H35COOH + KOH  C17H35COOK +H2O



стеариновая к-та стеарат калия

Соли щелочноземельных металлов (Са, Ва и др.) не растворимы в воде, так же как соли тяжелых металлов (например, Рb).





Достарыңызбен бөлісу:
1   ...   22   23   24   25   26   27   28   29   30




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет