История математики
Д.Я. Стройк. Краткий очерк истории математики. - М.: Наука, 1984.
Глава I. Начало 1
Глава II. Древний Восток 3
Глава III. Греция 11
Глава IV. Восток после упадка античного общества 24
Глава V. Западная Европа. - Начало 30
Глава VI. Семнадцатое столетие 37
Глава VII. Восемнадцатое столетие 46
Глава I. Начало
1. Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века – палеолита. В течение сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом – собиранием ее, где только это было возможно. Люди изготовляли орудия для охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали свое существование, создавая произведения искусства, статуэтки и рисунки. Возможно, рисунки в пещерах Франции и Испании (давности порядка 15 тысяч лет) имели ритуальное значение, но несомненно в них обнаруживается замечательное чувство формы.
Пока не произошел переход от простого собирания пищи к активному ее производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век, в неолит.
Это великое событие в истории человечества произошло примерно десять тысяч лет тому назад, когда ледяной покров в Европе и Азии начал таять и уступать место лесам и пустыням. Постепенно прекращались кочевые странствия в поисках пищи. Рыболовы и охотники больше вытеснялись первобытными земледельцами. Такие земледельцы, оставаясь на одном месте, пока почва сохраняла плодородие, строили жилища, рассчитанные на более долгие сроки. Стали возникать деревни для защиты от непогоды и от врагов-хищников. Немало таких неолитических поселений раскопано. По их остаткам видно, как постепенно развивались такие простейшие ремесла, как гончарное, ткацкое и плотничье. Существовали житницы, так что население могло, производя излишки, запасать продукты на зиму и на случай неурожая. Выпекали хлеб, варили пиво, в эпоху позднего неолита плавили и обрабатывали медь и бронзу. Совершались открытия, были изобретены гончарный круг и тележное колесо, совершенствовались лодки и жилища. Все эти замечательные новшества возникали лишь в пределах той или иной зоны и не всегда распространялись вне ее. Например, американские индейцы узнали о существовании тележного колеса лишь после прихода белых. Тем не менее, темп технического прогресса в колоссальной мере ускорился по сравнению с древним каменным веком.
Деревни вели между собой значительную торговлю, которая настолько развилась, что можно проследить наличие торговых связей между областями, удаленными на сотни километров друг от друга. Эту коммерческую деятельность сильно стимулировали открытие техники выплавки меди и бронзы и изготовление сначала медных, а затем бронзовых орудий и оружия. Это в свою очередь содействовало дальнейшему формированию языков. Слова этих языков выражали вполне конкретные вещи и весьма немногочисленные абстрактные понятия, но языки уже имели известный запас слов для простых числовых терминов и для некоторых пространственных образов. На таком уровне находились многие племена в Австралии, Америке и Африке, когда они впервые встретились с белыми людьми, а некоторые племена и сейчас живут в таких условиях, так что есть возможность изучить их обычаи и способы выражения мыслей.
2. Числовые термины, выражающие некоторые из «наиболее абстрактных понятий, какие в состоянии создать человеческий ум», как сказал Адам Смит, медленно входили в употребление. Впервые они появляются скорее как качественные, чем количественные термины, выражая различие лишь между одним (или, вернее, «каким-то» – «какой-то» скорее, чем «один человек»} и двумя и многими. Древнее качественное происхождение числовых понятий и сейчас еще выявляется в тех особых двоичных терминах, которые имеются в некоторых языках, как, например, в греческом и кельтском. С расширением понятия числа большие числа сначала образовывались с помощью сложения: 3 путем сложения 2 и 1, 4 путем сложения 2 и 2, 5 путем сложения 2 и 3.
Вот примеры счета некоторых австралийских племен:
Племя реки Муррей: 1 = энэа, 2 = петчевал, 3 = петчевал-энэа, 4 = петчевал-петчевал.
Камиларои: 1 = мал, 2 = булан, 3 = гулиба, 4 = булан-булан, 5 = булан-гулиба, 6 = гулиба-гулиба.
Развитие ремесла и торговли содействовало кристаллизации понятия числа. Числа группировали и объединяли в большие единицы, обычно пользуясь пальцами одной руки или обеих рук – обычный в торговле прием. Это вело к счету сначала с основанием пять, потом с основанием десять, который дополнялся сложением, а иногда вычитанием, так что двенадцать воспринималось как 10+2, а девять – как 10–1. Иногда за основу принимали 20 – число пальцев на руках и ногах. Из 307 систем счисления первобытных американских народов, исследованных Илсом (W. С. Eels), 146 были десятичными, 106 – пятичными и пятичными-десятичными, остальные – двадцатичными и пятично-двадцатичными. В наиболее характерной форме система с основанием двадцать существовала у майя в Мексике и у кельтов в Европе. Числовые записи велись с помощью пучков, зарубок на палках, узлов на веревках, камешков или ракушек, сложенных по пять в кучки, приемами, весьма схожими с теми, к каким в давние времена прибегал хозяин постоялого двора, пользовавшийся бирками. Для перехода от таких приемов к специальным символам для 5, 10, 20 и т.д. надо было сделать лишь один шаг, и именно такие символы мы обнаруживаем в. пользовании в начале писанной истории, на так называемой заре цивилизации.
Древнейший пример пользования бирками приходится на эпоху палеолита. Это – обнаруженная в 1937 г. в Вестонице (Моравия) лучевая кость молодого волка длиной около 17 сантиметров с 55 глубокими зарубками. Первые двадцать пять зарубок размещены группами по пять, за ними идет зарубка двойной длины, заканчивающая этот ряд, а затем с новой зарубки двойной длины начинается новый ряд из зарубок. Итак, очевидно, что неправильно старое утверждение, которое мы находим у Якоба Гримма и которое часто повторяли, будто счет возник как счет на пальцах. Пальцевый счет, то есть счет пятками и десятками, возник только на известной ступени общественного развития. Но раз до этого дошли, появилась возможность выражать числа в системе счисления, что позволяло образовывать большие числа. Так возникла примитивная разновидность арифметики. Четырнадцать выражали как 10+4, иногда как 15–1. Умножение зародилось тогда, когда 20 выразили не как 10+10, а как 2x10. Подобные двоичные действия выполнялись в течение тысячелетий, представляя собой нечто среднее между сложением и умножением, в частности в Египте и в доарийской культуре Мохенджо-Даро на Инде. Деление началось с того, что 10 стали выражать как «половину тела», хотя сознательное применение дробей оставалось крайне редким явлением. Например, у североамериканских племен известны только немногие случаи применения дробей, и почти всегда это только дробя 1/2 хотя иногда встречаются 1/3 и 1/4.
Любопытно, что увлекались очень большими числами, к чему, может быть, побуждало общечеловеческое желание преувеличить численность стада или убитых врагов; пережитки такого уклона заметны в библии и в других религиозных книгах.
3. Возникла и необходимость измерять длину и емкость предметов. Единицы измерения были грубы, и при этом часто исходили из размеров человеческого тела. Об этом нам напоминают такие единицы, как палец, фут (то есть ступня), локоть. Когда начали строить дома такие, как у земледельцев Индии или обитателей свайных построек Центральной Европы, стали вырабатываться правила, как строить по прямым линиям и под прямым углом. Английское слово «straight» (прямой) родственно глаголу «stretch» (натягивать), что указывает на использование веревки. Английское слово «line» (линия) родственно слову «linen» (полотно), что указывает на связь между ткацким ремеслом и зарождением геометрии. Таков был один из путей, по которому шло развитие математических интересов.
Человек неолита обладал также острым чувством геометрической формы. Обжиг и раскраска глиняных сосудов, изготовление камышовых циновок, корзин и тканей, позже – обработка металлов вырабатывали представление о плоскостных и пространственных соотношениях. Должны были сыграть свою роль и танцевальные фигуры. Неолитические орнаменты радовали глаз, выявляя равенство, симметрию и подобие фигур. В этих фигурах могут проявляться и числовые соотношения, как в некоторых доисторических орнаментах, изображающих треугольные числа; в других орнаментах мы обнаруживаем «священные» числа. Такого рода орнаменты оставались в ходу и в исторические времена. Прекрасные образцы мы видим на дипилоновых вазах миноиского и раннегреческого периода, позже – в византийской и арабской мозаике, в персидских и китайских коврах. Первоначально ранние орнаменты, возможно, имели религиозное или магическое значение, но постепенно преобладающим стало их эстетическое назначение.
В религии каменного века мы можем уловить первые попытки вступить в борьбу с силами природы. Религиозные обряды были насквозь пронизаны магией, магический элемент входил в состав существовавших тогда числовых и геометрических представлений, проявляясь также в скульптуре, музыке, рисунке.
Существовали магические числа такие, как 3, 4, 7, и магические фигуры, как, например, пятиконечная звезда и свастика; некоторые авторы даже считают, что эта сторона математики были решающим фактором в ее развитии, но, хотя общественные корни математики в новейшие времена, быть может, стали менее заметны, они вполне очевидны в раннем периоде истории человечества. Современная «нумерология» –пережиток магических обрядов, восходящих к неолитической, а может быть, даже к палеолитической эпохе.
4. Даже у самых отсталых племен мы находим какой-то отсчет времени и, следовательно, какие-то сведения о движении Солнца, Луны и звезд. Сведения этого рода впервые приобрели более научный характер, когда стали развиваться земледелие и торговля. Пользование лунным календарем относится к очень давней эпохе в истории человечества, так как изменение в ходе произрастания растений связывали с фазами Луны. Примитивные народы обратили внимание и на солнцестояние, и на восход Плеяд в сумерках. Самые древние цивилизованные народы относили астрономические сведения к наиболее отдаленному, доисторическому периоду своего существования. Другие первобытные народы пользовались при плавании созвездиями как ориентирами. Эта астрономия дала некоторые сведения о свойствах сферы, окружностей, об углах.
5. Эти краткие сведения из эпохи зарождения математики показывают, что наука в своем развитии не проходит обязательно все те этапы, из которых теперь складывается ее преподавание. Лишь недавно ученые обратили должное внимание на некоторые из древнейших известных человечеству геометрических фигур такие, как узлы или орнаменты. С другой стороны, некоторые более элементарные ветви нашей математики, как построение графиков или элементарная статика, сравнительно недавнего происхождения. А. Шпайзер заметил с известной едкостью: «За позднее происхождение элементарной математики говорит хотя бы то, что она явно склонна быть скучной, – свойство, видимо, ей присущее, – тогда как творческий математик всегда предпочтет заниматься задачами интересными и красивыми».
Достарыңызбен бөлісу: |