Лекция №7. Классификация и маркировка легированных сталей. Применение. Влияние легирующих элементов на равновесную структуру сталей



Дата13.07.2016
өлшемі81.76 Kb.
#196614
түріЛекция
ЛЕКЦИЯ №7.

Классификация и маркировка легированных сталей. Применение. Влияние легирующих элементов на равновесную структуру сталей.

План:

  1. Понятие «легированные стали»

  2. Назначение легирующих элементов

  3. Распределение легирующих элементов в стали.

  4. Принцип маркировки легированных сталей.

  5. Влияние элементов на полиморфизм железа



Легированные стали

 Углеродистые стали не всегда удовлетворяют требованиям, предъявляемым к материалам современной техникой: например, при увеличении нагрузок и при работе на больших скоростях необходимо, чтобы деталь имела высокие эксплуатационные свойства, значительно увеличивать размеры деталей. Кроме того, углеродистые стали обладают низкой коррозионной устойчивостью и стойкостью при повышенных температурах, имеют высокий коэффициент линейного расширения…. .

Значительно улучшает физико-механические и химические свойства сталей введение в их состав легирующих компонентов.

Элементы, специально вводимые в сталь в определенных концентрациях с целью изменения ее строения и свойств, называются легирующими элементами, а стали – легированными.

Содержание легирующих элементов может изменяться в очень широких пределах: хром или никель – 1% и более процентов; ванадий, молибден, титан, ниобий – 0,1… 0,5%; также кремний и марганец – более 1 %. При содержании легирующих элементов до 0,1 % – микролегирование.

В конструкционных сталях легирование осуществляется с целью улучшения механических свойств (прочности, пластичности). Кроме того меняются физические, химические, эксплуатационные свойства.

Легирующие элементы повышают стоимость стали, поэтому их использование должно быть строго обоснованно.
 Назначение легирующих элементов.

 

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100)oС. При большом его содержании ( выше 12 %) сталь становится нержавеющей.



Дополнительные легирующие элементы.

Бор - 0.003%. Увеличивает прокаливаемость, а также повышает порог хладоломкости (+20…-60 oС.

Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.

Титан (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.

Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до –20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.

Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает прочность и вязкость.

Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.

Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

При легировании хромомарганцевых сталей кремнием получают, стали – хромансиль (20ХГС, 30ХГСА). Стали обладают хорошим сочетанием прочности и вязкости, хорошо свариваются, штампуются и обрабатываются резанием. Кремний повышает ударную вязкость и температурный запас вязкости.

Добавка свинца, кальция – улучшает обрабатываемость резанием. Применение упрочнения термической обработки улучшает комплекс механических свойств.

 

Распределение легирующих элементов в стали.

 

Легирующие элементы растворяются в основных фазах железоуглеродистых сплавов ( феррит, аустенит, цементит), или образуют специальные карбиды.



Растворение легирующих элементов в происходит в результате замещения атомов железа атомами этих элементов. Эти атомы создают в решетке напряжения, которые вызывают изменение ее периода.

Изменение размеров решетки вызывает изменение свойств феррита – прочность повышается, пластичность уменьшается. Хром, молибден и вольфрам упрочняют меньше, чем никель, кремний и марганец. Молибден и вольфрам, а твкже кремний и марганец в определенных количествах, снижают вязкость.

В сталях карбиды образуются металлами, расположенными в таблице Менделеева левее железа (хром, ванадий, титан), которые имеют менее достроенную d – электронную полосу.

В процессе карбидообразования углерод отдает свои валентные электроны на заполнение d – электронной полосы атома металла, тогда как у металла валентные электроны образуют металлическую связь, обуславливающую металлические свойства карбидов.

При соотношении атомных радиусов углерода и металла более 0,59 образуются типичные химические соединения: Fe3C, Mn3C, Cr23C6, Cr7C3, Fe3W3C – которые имеют сложную кристаллическую решетку и при нагреве растворяются в аустените.

При соотношении атомных радиусов углерода и металла менее 0,59 образуются фазы внедрения: Mo2C, WC, VC, TiC, TaC, W2C – которые имеют простую кристаллическую решетку и трудно растворяются в аустените.

Все карбиды обладают высокой твердостью и температурой плавления.

Принцип маркировки легированных сталей.
Качественные и высококачественные легированные стали

 

Обозначение буквенно-цифровое. Легирующие элементы имеют условные обозначения, Обозначаются буквами русского алфавита.



Обозначения легирующих элементов:

Х – хром, Н – никель, М – молибден, В – вольфрам,

К – кобальт, Т – титан, А – азот ( указывается в середине марки),

Г – марганец, Д – медь, Ф – ванадий, С – кремний,

П – фосфор, Р – бор, Б – ниобий, Ц – цирконий,

Ю – алюминий, А -в середине-азот, А в конце марки –высококачественная сталь.

 
Легированные конструкционные стали

 

Сталь 15Х25Н19ВС2



В начале марки указывается двухзначное число, показывающее содержание углерода в сотых долях процента. Далее перечисляются легирующие элементы. Число, следующее за условным обозначение элемента, показывает его содержание в процентах,

Если число не стоит, то содержание элемента не превышает 1,5 %.

В указанной марке стали содержится 0,15 % углерода, 35% хрома, 19 % никеля, до 1,5% вольфрама, до 2 % кремния.

Для обозначения высококачественных легированных сталей в конце марки указывается символ А.

 
Легированные инструментальные стали

 

Сталь 9ХС, сталь ХВГ.



В начале марки указывается однозначное число, показывающее содержание углерода в десятых долях процента. При содержании углерода более 1 %, число не указывается,

Далее перечисляются легирующие элементы, с указанием их содержания.

Некоторые стали имеют нестандартные обозначения.

 
Быстрорежущие инструментальные стали

 

Сталь Р18



Р – индекс данной группы сталей (от rapid – скорость). Содержание углерода более 1%. Число показывает содержание основного легирующего элемента – вольфрама.

В указанной стали содержание вольфрама – 18 %.

Если стали содержат легирующие элемент, то их содержание указывается после обозначения соответствующего элемента.

 
Шарикоподшипниковые стали

 

Сталь ШХ6, сталь ШХ15ГС


Ш – индекс данной группы сталей. Х – указывает на наличие в стали хрома. Последующее число показывает содержание хрома в десятых долях процента, в указанных сталях, соответственно, 0,6 % и 1,5 %. Также указываются входящие с состав стали легирующие элементы. Содержание углерода более 1 %.

Влияние элементов на полиморфизм железа

 

Все элементы, которые растворяются в железе, влияют на температурный интервал существование его аллотропических модификаций (А= 911oС, А=1392oС).



В зависимости от расположения элементов в периодической системе и строения кристаллической решетки легирующего элемента возможны варианты взаимодействия легирующего элемента с железом. Им соответствуют и типы диаграмм состояния сплавов системы железо – легирующий элемент (рис. 17.1)

Большинство элементов или повышают А и снижают А, расширяя существовавшие –модификации (рис.17.1.а), или снижают А4 и повышают А, сужая область существования – модификации (рис.17.1.б).



Рис. 17.1. Схематические диаграммы состояния Fe – легирующий элемент. а – для элементов, расширяющих область существования –модификации; б – для элементов, сужающих область существования –модификации

 

Свыше определённого содержания марганца, никеля и других элементов, имеющих гранецентрированную кубическую решетку, – состояние существует как стабильное от комнатной температуры до температуры плавления, такие сплавы на основе железа называются аустенитными.


При содержании ванадия, молибдена, кремния и других элементов, имеющих объемно-центрированную кубическую решетку, выше определённого предела, устойчивым при всех температурах является – состояние. Такие сплавы на основе железа называются ферритными.
Аустенитные и ферритные сплавы не имеют превращений при нагреве и охлаждении.

Контрольные вопросы.


  1. В чём различие между углеродистыми и легированными сталями?

  2. Какие легирующие компоненты увеличивают твёрдость и прочность стали?

  3. Какие легирующие компоненты улучшают химические свойства стали?

  4. Как маркируются легированные конструкционные стали?

  5. Как маркируются легированные инструментальные стали?

  6. Чем характеризуются основные марки быстрорежущей инструментальной стали?

  7. ***Какими свойствами обладает аустенитная сталь?

  8. ***Какие элементы делают сталь магнитной даже выше «точки Кюри»?

Задание.

Продолжить практическую работу №1. Сдать отчёт. Защита.




Достарыңызбен бөлісу:




©dereksiz.org 2025
әкімшілігінің қараңыз

    Басты бет