Орлов д. В. Сафонов м. В



бет1/17
Дата16.06.2016
өлшемі2.41 Mb.
#140259
түріРеферат
  1   2   3   4   5   6   7   8   9   ...   17




ОРЛОВ Д.В. САФОНОВ М.В.

АКВАЛАНГ
и

ПОДВОДНОЕ ПЛАВАНИЕ



Электронная версия: "Акватик" Выполнили Погорелов Р.Г.; Черкесов С.П.



Содержание

Введение 3

Часть 1. ФИЗИКА И ФИЗИОЛОГИЯ 4

Глава 1.1. Человек, вода и газы 4

Глава 1.2. Дыхательная и кровеносная системы человека 6

Часть 2. ПОДВОДНОЕ СНАРЯЖЕНИЕ 8

Глава 2.1. Комплект №1 8

Глава 2.2. Дыхательные аппараты 11

Глава 2.3. Баллоны и баллонные блоки 12

Глава 2.4. Регулятор 15

Глава 2.5. Редуктор 16

Глава 2.6. Легочные автоматы 19

Глава 2.7. Уход за аквалангом 24

Глава 2.8. Регулировка плавучести. Компенсаторы и грузовые пояса 25

Глава 2.9. Костюмы 31

Глава 2.10. Средства информации 32

Глава 2.11.Ножи 37

Глава 2.12. Дополнительные аксессуары 37

Часть 3. ПОДВОДНАЯ МЕДИЦИНА. 39

Глава 3.1. Баротравма уха 39

Глава 3.2. Баротравма легких 41

Глава 3.3. Мозаика баротравм 42

Глава 3.4. Декомпрессионная болезнь 43

Глава 3.5. Азот и наркомания 50

Глава 3.6. Кислород 52

Глава 3.7. Углекислый газ 53

Глава 3.8. Утопление 53

Глава 3.9. Переохлаждение, или гипотермия 54

Глава 3.10. Разное 55

Глава 3.11. Внезапный смертельный синдром. 56

Глава 3.12. Лекарственные препараты и подводное плавание 57

Глава 3.13. Потеря сознания и гибель под водой 57

Часть 4. МЕТОДИКА ПОГРУЖЕНИЙ 59

Глава 4.1. Плавание с дыхательной трубкой 59

Глава 4.2. Язык общения 63

Глава 4.3. Базовые упражнения 67

Глава 4.4. Подготовка к погружению 70

Глава 4.5. Погружение 71

Глава 4.6. Страховка 75

Глава 4.7. Планирование 76

Глава 4.8. Таблицы погружений 78

Глава 4.9. Погружения в нестандартных условиях 80

Глава 4.10. Спасение и первая помощь 82

Часть 5. МОЗАИКА 86

Глава 5.1. Подводная психология 86

Глава 5.2. Женщина и море 88

Глава 5.3. Гид по подводным федерациям 90

Часть 6. ОПАСНЫЕ МОРСКИЕ ЖИВОТНЫЕ 92

Глава 6.1. Активно—ядовитые животные 92

Глава 6.2. Пассивно—ядовитые животные 95

Глава 6.3. Хищники 95

Заключение 97

Список рекомендуемой литературы 98


Введение
Подводное плавание с аквалангом мощной волной ворвалось в на­шу жизнь. Совсем недавно подводный спорт в России был доступен лишь избранным: профессиональным водолазам, ученым, боевым пловцам, спортсменам и фанатам — любителям. Это и понятно, ведь у нашей гигантской страны есть лишь суровый и вечно холодный Ле­довитый океан, "замученное" цивилизацией Черное море и романти­ческое, но далекое и дикое дальневосточное побережье. Не все спо­собны пожертвовать комфортом и двинуться в дальние края, чтобы терпеть лишения походной жизни в палатках или полуразрушенных рыбачьих домиках, мерзнуть в ледяной воде и рисковать здоровьем ради кратких минут в подводном мире. Сейчас, когда широко откры­лись двери для поездок в экзотические страны, поток российских ту­ристов захлестнул курорты на теплых морях, а вместе с ними — и многочисленные подводные центры. Фильмы Кусто стали реально­стью, а необычный и прекрасный подводный мир — доступным всем желающим. Любой более — менее здоровый человек, заплатив, сколь­ко — то долларов, может погрузиться под воду, где почувствует себя героическим исследователем глубин или искателем кладов. Эстети­ческое наслаждение, полученное от общения с морскими создания­ми, также манит людей в таинственный зеленый полумрак. Все шире становится крут любителей подводного плавания. Один раз погру­зившись с аквалангом на коралловый риф или в таинственную пеще­ру, на затонувший фрегат или под сверкающий лед, вы уже никогда не сможете с ними расстаться, и каждый раз, прощаясь, будете с не­терпением ждать нового свидания.

К сожалению, среди бесчисленных начинающих подводни­ков — любителей далеко не все обладают достаточными знаниями и навыками. Каждый год происходит множество несчастных случаев, в том числе со смертельным исходом, из — за невежества пострадав­ших, безграмотности партнеров или невнимательности инструкто­ров. В глубину погрузиться очень просто, а вот вынырнуть на поверх­ность живым и здоровым бывает значительно сложнее. Надо учить­ся! Будем надеяться, что эта книга поможет вам войти в мир подвод­ного плавания во всеоружии и даст импульс дальнейшему совершен­ствованию вашего мастерства.



Часть 1. ФИЗИКА И ФИЗИОЛОГИЯ
Глава 1.1. Человек, вода и газы

Чтобы крепче запомнить немудреные, но жесткие правила пове­дения под водой и автоматически выполнять их в любой ситуации, надо понимать механизмы воздействия окружающей среды на орга­низм человека. Все внешние проявления состояния организма, его жизнь и смерть описываются законами физики. Поэтому для начала придется кое-что вспомнить из школьного курса физики газов и жидкостей.

Знаете, кто самый страшный враг аквалангиста? Вода! В этой ста­рой как мир водолазной шутке есть немалая доля истины, поскольку в принципе вода — враждебная человеку среда обитания. Она имеет значительно большую плотность, нежели воздух, к которому приспо­соблены все наши жизненно важные системы органов, и поэтому ее воздействие вызывает неприятные, а часто и болевые ощущения. Са­мое очевидное следствие повышенной плотности воды — мощное ги­дростатическое давление, которое нельзя не почувствовать, погру­жаясь на глубину.

Давление

Напомним, что давление зависит от силы, приложенной к поверх­ности определенной площади.

Поэтому, если при той же силе площадь удваивается, давление уменьшается вдвое. На поверхности моря человек испытывает дав­ление воздушного столба высотой 150 км. Атмосферное давление равно по величине тому, которое оказывает столбик ртути высотой 760 мм или столбик пресной воды высотой 10,33 м. Для простоты рас­четов на практике за единицу давления принимают условную техни­ческую атмосферу — давление 10 — метрового водного столба. Таким образом, гидростатическое давление — т.е. давление водного столба

— увеличивается в морской воде на 1 атм при опускании на каждый десяток метров. Сумма атмосферного и гидростатического давлений называется абсолютным давлением. Например, на глубине 30 м оно равно Рабс = Ратм + Ргидр =1+3=4 атм.

Необходимо учитывать, что морская и пресная вода имеют раз­ные плотности. Поскольку все рекомендации и методики написаны для морской воды, для рек и озер следует делать поправку на раз­ность плотностей. Гидростатическое давление пресной воды увели­чивается на 1 атм через каждые 10,3 м. Например, в озере Байкал на той же глубине 30 м Рабс составит лишь 3,9 атм.

Каждый подводник должен подстраивать свое поведение под внешнее давление, знать его величину и чутко реагировать на его из­менения, уравновешивая внутреннее давление в полостях организма и в снаряжении.



Осторожно, газы!

Для безопасной подводной деятельности подводнику требуется постоянно поддерживать баланс между внешним и внутренним дав­лением. Его нарушение моментально регистрируется органами чувств, проявляясь в болевых ощущениях. Чтобы не допустить пос­ледних и не привести собственный организм к катастрофе, надо знать и понимать законы внутреннего давления, определяемые пове­дением газов и жидкостей в человеческом организме. Газовые зако­ны Генри, Шарля, Дальтона, Бойля — Мариотта и Гей — Люссака описывают процессы, определяющие многие аспекты подводного плавания с аквалангом.



1. Первый газовый закон (сумма законов Бойля — Мариотта, Гей — Люссака и Шарля): давление газа обратно пропорционально его объему и прямо пропорционально температуре.

Для подводника наиболее важные следствия данного закона та­ковы:

1. При спуске с увеличением гидростатического давления объем воздуха в полостях организма и подмасочном пространстве уменьшается. Поэтому приходится компенсировать его, добавляя в эти полости некоторое количество воздуха (см. главы 3.1 и 3.3).

2. При подъеме на поверхность внешнее давление падает, и объем воздуха в полостях организма и в маске растет. Поэтому избыток воздуха нужно своевременно удалять. Так, задержка выдоха при всплытии приводит к разрыву легких.

3. При слишком быстром подъеме микропузырьки газа в крови разрастаются в большие пузыри и блокируют кровообращение, вызывая декомпрессионную болезнь (см. главу 3.4).

4. Если оставить заполненный под избыточным давлением акваланг на жарком солнце, раскалившийся баллон может взорваться

из — за повышения давления сжатого воздуха.

2. Давление смеси газов равно сумме парциальных давлений отдельных газов, ее составляющих (закон Дальтона).

Таким образом, парциальное давление каждого газа пропорционально процентной доле газа в смеси и величине абсолютного давления последней, т.е.



где п — процентная доля газа в смеси. Это положение необходимо для определения воздействия воздуха или другой газовой смеси на организм человека, поскольку в любом процессе участвуют конкретные газы, эту смесь составляющие.



3. Количество газа, растворенного в жидкости (например, в крови или морской воде), прямо пропорционально его парциальному давлению на поверхность жидкости (закон Генри).

При увеличении внешнего давления создается градиент диффузии газа в жидкость, и он поступает в нее до тех пор, пока его парциальное давление в жидкости не сравняется с внешним. Это состояние называется насыщением. При понижении внешнего давления создается перенасыщение газа в жидкости, и тот начинает выходить наружу. Иными словами, степень насыщения газом жидкости пря­мо зависит от окружающего давления.

Положения 2 и 3 позволяют правильно оценить воздействие каж­дого газа на организм: ведь под повышенным давлением они сильнее насыщают кровь и ткани человека. При достижении определенного парциального давления газ может вызвать весьма отрицательную и даже смертельную реакцию. Например, на поверхности моря в тка­нях человека растворено примерно 1 л азота. При погружении под­водник потребляет воздух под давлением, что ведет к росту парци­ального давления азота. На глубинах свыше 50 м оно достигает поро­говой величины, вызывая наркотическое опьянение, а при всплытии — уменьшается, и азот выходит из кровеносной системы через лег­кие.

Рассуждая о газовых законах, мы имеем ввиду не абстрактные, а вполне реальные газы, составляющие атмосферный воздух: кисло­род (20,94%), азот (78,09%), углекислый газ (0,04%), инертные газы (менее 1%).



Кислород принимает непосредственное участие в окислительных процессах организма. Потребление газообразного кислорода и вы­деление углекислого газа и есть собственно функция дыхания. При уменьшении его доли в воздухе до 18% (т.е. до парциального давле­ния 0,18 атм) наступает кислородное голодание с потерей сознания и даже летальным исходом. При парциальном давлении свыше 2,8 атм кислород вызывает кислородное отравление, что ничуть не лучше. Но можете не волноваться, ведь такое давление кислорода возника­ет на глубине... впрочем, рассчитайте сами, это нетрудно.

Азот не усваивается тканями организма, но растворяется в крови, вызывая различные неприятности. Неприятность первая: при парци­альном давлении в 5 — 6 атм азот может вызывать наркотическое опь­янение. Неприятность вторая: при стремительном подъеме на по­верхность, с быстрым падением внешнего давления, азот возвраща­ется в газообразное состояние в виде пузырьков, которые не успева­ют выходить через легкие и остаются в тканях организма. Они бло­кируют и замедляют кровообращение, вызывая декомпрессионную болезнь (см. главу 3.4).

Углекислый газ выводится из человеческого организма с выдыха­емым воздухом, где составляет 5%. При парциальном давлении 0,03 атм. (т.е. при содержании 3% в воздухе) вызывает отравление, при 0,1 атм. — потерю сознания. Если баллоны заряжены чистым воздухом, отравления нечего опасаться даже на глубинах 50 — 60 м, но если компрессор установлен в душном, плохо проветриваемом помеще­нии, то уже на средних глубинах аквалангист может почувствовать головную боль. Использование длинной дыхательной трубки, в которой после выдоха остаются "выхлопные" газы с повышенным содер­жанием углекислого газа, также может привести к легкому отравле­нию.

Угарный газ, попадающий в воздух с выхлопными газами из дви­гателей внутреннего сгорания, даже в мизерных количествах (около 0,05 %) вызывает потерю сознания и смерть. Помните, что правиль­ный выбор места для компрессора и времени для забивки баллонов жизненно важен!

Для глубоководных погружений используются газовые смеси, в которых наркотический азот полностью или частично заменен газа­ми, не оказывающими наркотического воздействия: гелием, водоро­дом и некоторыми другими.



Плавучесть

Возвращаемся к особенностям водной среды и их воздействию на жизнь, здоровье и душевное спокойствие аквалангиста. Значитель­ная плотность воды, в особенности морской, создает необычную сре­ду, в которой человек может почувствовать, что такое невесомость. Архимед в крике "Эврика!" первым высказал то, о чем, наверное, до­гадывались и наши прародители. Объект, находящийся в воде, зна­чительно легче чем на суше, а потеря его веса равна весу жидкости, которую он вытеснил. Если последний больше, чем вес тела, объект плавает на поверхности воды; если меньше — тонет; если же их вес одинаков, объект находится во взвешенном состоянии, т.е. в состоя­нии нейтральной плавучести.

Таким образом, на пловца действуют сила тяжести, зависящая от массы тела, и сила плавучести, зависящая от его объема. Их равнове­сие и определяет положение человека в воде. В среднем, удельный вес человеческого тела около единицы, т.е. почти как у пресной во­ды: у мужчин — чуть больше единицы, а у женщин — немного мень­ше. В пресных водоемах средний мужчина имеет слабую отрицатель­ную плавучесть, а в море — нейтральную. Подкожная жировая про­слойка у женщин на 25% толще, чем у мужчин, и поэтому даже самые тонкие и стройные представительницы слабого пола обладают не­большой положительной плавучестью не только в морской, но и в пресной воде. С одной стороны, это очень хорошо — милые дамы ни­когда не утонут, если сами не постараются себя утопить. С другой стороны, им приходится затрачивать дополнительные усилия для заныривания и плавания под водой — архимедова сила постоянно вы­талкивает их, словно поплавок.

Температура

Температура тела живого и здорового человека, которая колеблется около 36,6 "С, выше температуры воды. Возникает теплоотдача — мощный поток тепловой энергии из организма в окружающую воду. Кстати, у воды теплоемкость в 4 раза, а теплопроводность в 25 раз выше, чем у воздуха, а, кроме того, в естественных условиях вода еще и постоянно куда-нибудь течет или завихряется. Все это ведет к большим теплопотерям организма и переохлаждению, что может закончиться потерей сознания и даже смертью. Поэтому время пребывания человека в воде, даже в тропически теплой, ограничено.

Как правило, температура воды постепенно понижается с глуби­ной, достигая в глубоководных зонах примерно 3—4 "С, а в поляр­ных областях опускается до нуля уже на глубине 30 м. Нередко по­верхностные водные массы, прогретые солнышком, в силу разных свойств отделены от холодных масс четкой видимой границей — термоклином. Термоклин в виде тонкого (1 —2 м высотой), мутного слоя — явление достаточно забавное. Иногда случается, что голова подводника наслаждается теплом в 10 — 12 "С, а пальцы ног немеют в ледяной воде под термоклином. Сезонный термоклин четко выра­жен в озере Байкал и наших северных морях. Иногда водные массы имеют мозаичное распределение, и тогда холодные и теплые слои чередуются.

Для уменьшения тепловых потерь подводники создают прослойку воздуха или нагретой воды между телом и окружающей водой при помощи защитной спецодежды — гидрокостюма.



Свет и цвет

Откройте глаза под водой. Что увидели? Лишь неясные очерта­ния и тени. К сожалению, наши глаза в водной среде менее эффек­тивны, чем на суше. Чтобы понять причину, вновь обратимся к фи­зике — к разделу оптики. Явление рефракции заключается в прело­млении и отражении световых лучей на границе двух сред с различ­ными плотностями. В роговице, хрусталике и стекловидном теле глазного яблока лучи преломляются таким образом, что фокусиру­ют изображение видимого объекта на сетчатой оболочке задней стенки глазного яблока. Сетчатка же, состоящая из чувствительных клеток — палочек и колбочек, преображает световые сигналы в нер­вные, которые проходят по глазному нерву в анализирующий центр мозга.

Коэффициент преломления солнечных лучей в воде приблизи­тельно равен таковому в глазах человека. Поэтому они слабее прело­мляются в роговице, и изображения предметов фокусируются где-то за сетчаткой, оставляя на ней лишь неясные образы. Для ус­транения дефекта мнимой дальнозоркости, используют маску, кото­рая создает воздушную прослойку между глазом и окружающей вод­ной средой. Теперь лучи перед попаданием на глаз проходят через слой воздуха, что возвращает эффективность зрению. Однако про­ходящие через стеклянную маску лучи преломляются еще перед рефракцией в глазных структурах, искажая действительность: все предметы кажутся крупнее и ближе приблизительно на 25%. Начина­ющим подводникам приходится привыкать к постоянному обману зрения под водой.

Световые лучи, входящие в воду, не только отражаются и погло­щаются, но и частично рассеиваются. Чем больше взвешенных час­тиц в воде, тем сильнее световое рассеивание и тем хуже видимость под водой. Так, высокая прозрачность в открытом океане обусловле­на скудостью планктона и отсутствием органической донной взвеси. А вот видимость в устьях рек, воды которых несут в море громадную массу взвешенной органики, близка к нулю. Во многих морях и озе­рах прозрачность имеет сезонную динамику. Например, часто мож­но услышать в разговоре выражение "вода зацвела" — это значит, что она прогрелась до определенной температуры, и одноклеточные водоросли стали бурно размножаться, создавая взвесь и уменьшая прозрачность. Скажем, в озере Байкал весной и в начале лета види­мость под водой достигает 40 м, и мелкие детали живописных подвод­ных скал, круто уходящих на километровую глубину, отлично про­сматриваются с борта моторной лодки. В конце июня прогретая на поверхности вода "зацветает" — масса водорослей понижает види­мость до расстояния вытянутой руки. Прогретые массы, однако, дер­жатся в поверхностном слое 15 — 20 м высотой, а под термоклином сохраняется байкальская ледяная вода, хрустально—прозрачная и чистая.

Рассеяние световых лучей приводит к постепенному понижению освещенности с глубиной. Скорость затемнения зависит от прозрач­ности воды. В тропических морях с хорошей видимостью так светло, что глубину в 40 м можно не заметить, если не следить по приборам. В Белом море сумерки наступают на 20 м, а на 40 уже черно, как в фо­токомнате.

Мы с вами живем в мире белого света, который на самом деле со­стоит из многих цветовых составляющих, обусловленных волнами разной длины. Вода поглощает их неодинаково, поэтому цветовой спектр под водой сильно изменяется. Так, в чистой океанской воде красные лучи поглощаются на первом же метре, оранжевые — на пя­том, а желтый цвет исчезает на глубине 10м. Подводный мир видится нам зелено—голубым.

Для того, чтобы ваш партнер или страхующий лучше вас видел, рекомендуется использовать гидрокостюмы и снаряжение ярких расцветок. Только помните, что многие цвета, ласкающие глаз ядо­витой тональностью на земле, в воде теряют яркость. Например, красный становится темно-фиолетовым уже под поверхностью, а вскоре вообще превращается в черный. Поэтому многие предметы легководолазного снаряжения окрашены желтым: полосы на гидро­костюмах, баллоны многих аквалангов, дополнительные легочные автоматы.

Звук под водой

На суше мы нередко ориентируемся в пространстве по звукам, поскольку расположение их источника определить, как правило, не­трудно. Подводники, увы, этим похвастаться не могут. Если источник звука находится над поверхностью воды, звуковые волны отражают­ся от нее, не проникая на глубину. Бесполезно что — либо сверху кри­чать пловцу, который уже погрузился под воду. Зато в водной среде звуковые волны распространяются во всех направлениях, а их ско­рость увеличивается в 4 раза. Это создает массу неудобств. Напри­мер, аквалангист не сможет определить по шуму мотора, где и на ка­ком расстоянии движется лодка. Потеряв из виду партнера в мутной воде, можно слышать вблизи его дыхание и клокотание выдыхаемых пузырей из легочного автомата, но так и не обнаружить того, кто их пускает. Щелканье и пронзительные крики дельфинов наполняют собой все окружающее пространство, но сами животные могут поя­виться с самой неожиданной стороны.



Глава 1.2. Дыхательная и кровеносная системы человека

Организм человека — хрупкое и ранимое создание природы, ко­торое легко вывести из строя. Все системы органов тесно взаимосвя­заны, и травма одной из них может привести к неблагоприятным по­следствиям для других. Знание деталей своего организма, их особен­ностей и предназначения, а также процессов, в которых они задейст­вованы, позволяет бережно к ним относиться и, тем самым, поддер­живать хорошее здоровье.



Жизненная энергия

Всякое живое существо живет за счет энергии, позволяющей клеткам делиться, а организму — функционировать. Она выделяется в результате окислительных реакций кислорода с углеводородными соединениями. Одним из продуктов энергетических реакций являет­ся углекислый газ, который затем выводится из организма. Таким об­разом, кислород жизненно необходим для поддержания биохимиче­ских процессов, питающих нас энергией. Дыхательная система чело­века предназначена для засасывания в организм газообразного кис­лорода и вывода наружу отработанного воздуха с "выхлопным" угле­кислым газом.

Из дыхательной системы кислород передается в кровеносную си­стему, которая разносит и распределяет его по всем органам. Одно­временно кровь забирает из пищеварительной системы питательные вещества и распределяет их по клеткам организма. Только благодаря кровеносной системе составные части энергетических реакций встречаются вместе. Движется кровь по сосудам за счет пульсирую­щего мускульного насоса — сердца, и поэтому всю транспортно — распределительную систему называют сердечно—сосудистой. Четкое функционирование дыхательной и сердечно—сосудистой систем определяет здоровье и жизнедеятельность.

Дыхательная система и дыхание

Дыхательные пути начинаются с ноздрей и ротовой полости. Нос ведь не только украшает лицо человека, но и утепляет,' увлажняет и фильтрует вдыхаемый воздух. Когда мы дышим ртом по разным при­чинам, то вдыхаем более холодный, сухой и неочищенный воздух (кстати, это хорошо чувствуется). Далее воздух проходит в горло и гортань, которую еще называют адамовым яблоком. Она производит звуки и предохраняет легкие от засорения посторонними частицами. Когда в гортань попадает вода, звуковые мышцы закрывают вход в легкие. Комар или хлебная крошка, проскальзывая через гортань, раздражают внутренние стенки дыхательных путей и вызывают ка­шель, выбрасывающий мусор наружу.

За гортанью следует тра­хея, которая раздваивается на бронхи. Их стенки покрыты ресничками, гонящими пылин­ки и прочие посторонние час­тицы с потоком слизи обратно в гортань, которые мы потом "выкашливаем" или проглаты­ваем. Курение повреждает ре­снички и уменьшает слизь, что приводит к быстрому загряз­нению легких.

Бронхи многократно делят­ся на мелкие дыхательные трубки — бронхиолы. Стенки дыхательных путей имеют кольчатую структуру, что пре­дохраняет их от опадания. При астме стенки бронхиол стано­вятся суперактивными и чувствительными, а их клетки выделяют слизь, что в комплексе приводит к значительному суживанию и даже закупориванию каналов. Подводнику, страдающему астмой или дру­гим заболеванием верхних дыхательных путей, следует ограничи­вать число погружений и внимательно следить за состоянием дыха­тельного тракта.

Самые тонкие бронхиолы заканчиваются микроскопическими пузырьками — альвеолами, плотно упакованными в парные губча­тые органы, известные под названием "легкие". Многие ошибочно полагают, что легкие — это парные полые мешки, которые то напол­няются воздухом, то сдуваются. На самом же деле, каждое легкое со­стоит примерно из 150 млн. (!) альвеол, покрытых общей тонкой обо­лочкой — плеврой. Совокупность объемов альвеол и считают объе­мом легких, который варьирует у взрослых людей от трех до семи ли­тров. Объем легких и искусство подводного плавания принципиаль­но не связаны между собой. Совсем необязательно, что под водой пловец с громадными легкими будет лучше себя чувствовать, чем то­варищ с легкими малого объема. Скорее наоборот, последний "высо­сет" воздух из акваланга за более продолжительный период времени и соответственно сможет дольше наслаждаться красотами подводно­го мира.

Внутреннюю поверхность груди ограничивает плевра — мембра­на, идентичная таковой на поверхности легких. Между двумя плев­рами создается плевральная полость — пространство, заполненное плевральной жидкостью, предотвращающей трение легких о груд­ную клетку во время мышечных дыхательных сокращений. Если од­на из мембран прорывается, воздух заполняет межплевральное про­странство, и легкие спадаются, что грозит смертельным исходом.

Расширяются легкие на вдохе за счет движений грудных межре­берных мышц и сокращения диафрагмы — мышечной перегородки, отделяющей грудную полость от брюшной. У мужчин и женщин со­отношение участия разных мышц в процессе дыхания несколько от­личается: у мужчин роль диафрагмы значительно выше, чем у жен­щин. Приглядитесь к окружающим, и вы легко отличите красивое "грудное" дыхание женщин от "брюшного" дыхания мужчин. Имен­но диафрагма подвергается давлению со стороны желудка, набитого пищей. После обильной трапезы раздутый желудок прогибает диа­фрагму в грудную полость и затрудняет ее дыхательные движения. В этой ситуации легкие расширяются преимущественно в переднезаднем и боковом направлениях. Диафрагма, сокращаясь, в свою очередь давит на полный желудок и "выталкивает" пищу в верхний пищеварительный тракт.

Человек использует лишь 10% объема легких в процессе обычно­го дыхания. При особенно глубоком вдохе он может вдохнуть еще примерно 1600 см3 воздуха (добавочный объем) и столько же с силой выдохнуть (резервный объем). Сумма всех трех объемов составляет жизненную емкость легких. Кроме того, даже при самом сильном выдохе, в легких остается около 1500 см3 остаточного воздуха, кото­рый предохраняет их от опадания.

Парциальные давления углекислого газа и кислорода в крови под­держиваются в строгих пределах. Рецепторы СО2, фиксирующие ма­лейшие изменения его концентрации, находятся в дыхательном цен­тре мозга. В спокойном состоянии человек совершает 16—18 дыха­тельных циклов в минуту. Регуляция дыхания происходит рефлекторно, но человек способен также контролировать его за счет ограничения движений грудных мускулов. Постоянная тренировка дыха­тельной и контролирующей систем лежит в основе искусства ныря­ния с задержкой дыхания — апное.

Сердечно-сосудистая система

Этап внешнего дыхания заканчивается тем, что кислород в соста­ве атмосферного воздуха переходит из альвеол в капилляры, опуты­вающие их густой сетью. Капилляры соединяются в легочные вены, которые несут кровь, насыщенную кислородом, в сердце, а точнее, в левое его предсердие. Из правого и левого предсердий кровь через клапаны поступает в желудочки, которые, сокращаясь, выталкивают кровь через полулунные клапаны в выносящие сосуды. Левый желу­дочек выталкивает кровь в аорту — она разветвляется на артерии, снабжающие кровью все системы органов и тканей. Кровь содержит кислород и питательные вещества, связывающиеся в клетках с обра­зованием углекислого газа и выделением энергии. В тканях происхо­дит газообмен СОз и Оз между клетками и кровью, т.е. процесс кле­точного дыхания. Насыщенная "выхлопными газами" кровь собира­ется в вены и поступает в правое предсердие сердца, и большой круг кровообращения замыкается.

Малый круг начинается в правом желудочке, откуда легочная ар­терия несет кровь на "зарядку" кислородом в легкие, разветвляясь и опутывая альвеолы капиллярной сетью.

Человеческий эмбрион, будучи в утробе матери, получает необхо­димые питательные вещества и кислород через плаценту. Его легкие не функционируют, и кровь циркулирует по одному кругу, попадая из правого предсердия в левое через односторонний клапан в межпредсердной перегородке — patent foramen ovale (PFO). С первым криком у новорожденного открываются легкие, а кровь "устремля­ется" в новое русло по малому кругу кровообращения. Клапан за­крывается, и у большинства людей с возрастом зарастает, но у 15% человечества остается, увы, в закрытом, но не заросшем состоянии. Поскольку давление в левом — артериальном — предсердии обычно выше, чем в правом, венозном, PFO обычно ничем себя не проявля­ет. Однако для аквалангистов приоткрытый PFO грозит серьезными осложнениями в случае декомпрессионной болезни (см. главу 3.4).

Давление крови в сосудах зависит от стадии работы сердца: мак­симальное, или верхнее, возникает при сокращении, т.е. когда левый желудочек с силой выталкивает порцию крови в аорту; нижнее на­блюдается во время диастолы, т.е. в перерыве между сокращениями. Нормальным кровяным давлением принято считать соотношение верхнего и нижнего давлений в плечевой артерии, равное 120/80 мм рт. ст. Обратному току крови из желудочков в предсердия и из арте­рий в желудочки препятствуют клапаны, работу которых можно слышать как тоны сердца. При поражении клапанов появляются лишние шумы, вызванные прохождением крови через суженные от­верстия.

Сердце, как и любой другой мускульный орган, обладает собст­венной сосудистой системой из коронарных артерий. Их поврежде­ние или заболевание вызывает инфаркт миокарда и ставит под угро­зу сердечную деятельность.

Сердце — своего рода двигатель организма. Частота и сила сокра­щений, рефлекторная в спокойном состоянии, регулируется центральной нервной системой и гормонами. Когда нам страшно или мы чувствуем прилив дикой страсти, надпочечные железы вырабатыва­ют гормон адреналин, стимулирующий сердечную деятельность. То­гда мы ощущаем громкие и частые биения сердца. Чтобы поддер­живать сердце в наилучшем состоянии, лучше воздержаться от на­грузок на сердце перед погружением: от кофе, алкоголя и, по возмо­жности, от тяжелых физических упражнений и любовных пережи­ваний...

Организм регулирует и контролирует кровоснабжение разных органов и частей тела в зависимости от конкретного состояния. На­верное, все знакомы с временным отупением после обильной трапе­зы, связанным с оттоком крови от головы к желудку, или с увеличе­нием и набуханием определенных мускулов в результате тяжелых физических упражнений. Нарушение контроля и регуляции крово­обращения под водой может привести к возникновению разнообраз­ных заболеваний, которые подробно рассмотрены в соответствую­щих главах третьей части.



Часть 2. ПОДВОДНОЕ СНАРЯЖЕНИЕ

Введение

Любая деятельность человека, не связанная с использованием ка­кой-либо техники, приборов или снаряжения, заставляет надеяться только на себя, дружескую помощь и везение. Таково, например, обычное плавание. Как только человек начинает использовать техни­ку — автомобиль или акваланг, его возможности преумножаются многократно, но возрастает и зависимость от этой техники, пропор­ционально сложности последней. Ныряльщик в первом комплекте (маска, трубка, ласты) попадает в неприятное положение, если он по­терял под водой что — нибудь из своего снаряжения, но в гораздо бо­лее сложном положении окажется аквалангист, если под водой пре­кратится подача воздуха. Подобное может случиться на глубине, не­возможной для всплытия на одном дыхании, громоздкий акваланг уменьшает подвижность и увеличивает сопротивление воды, не гово­ря о том, что чрезвычайная ситуация может произойти в пещере или подо льдом. Эти несложные умозаключения заставляют нас — под­водников — с величайшим вниманием относиться к используемой технике. Современное снаряжение ориентировано на комфорт и бе­зопасность аквалангиста, все элементы и узлы продуманы до мелочей и часто дублированы. Мы должны соблюдать простые правила и не нарушать рекомендации по использованию снаряжения. В настоя­щей главе мы рассмотрим стандартный набор снаряжения подводни­ка—любителя, его разнообразие и основные правила эксплуатации.

Если Вы только начинаете заниматься подводным плаванием, то обязательно пользуйтесь помощью квалифицированных специали­стов, приобретая индивидуальное снаряжение, а лучше всего — об­ратитесь за советом к своему инструктору.



Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8   9   ...   17




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет