Глава 23 Теория и практика компенсации диабета с использованием программноматематических средств
1. Математическая модель компенсации диабета
Эта глава адресована читателям, которые владеют необходимым математическим аппаратом, чтобы разобраться с изложенными в ней соображениями. Хотя мы напишем не слишком много формул, однако будем комментировать процесс компенсации диабета на математическом языке, дабы знающие и понимающие его могли лучше уяснить ситуацию.
Итак, в качестве эталона мы имеем здоровую поджелудочную железу — систему, автоматически и с высокой точностью реагирующую на концентрацию глюкозы в крови и секретирующую необходимое количество инсулина. Соответствующую кривую естественной суточной секреции инсулина обозначим F=F(t), где t — время, а F — содержание инсулина в крови. Пример функции F(t) дан на рисунке 8.2, график 1. Конкретный вид этой кривой зависит от двух факторов, изменяющих сахар крови: от физической нагрузки и поступления в организм углеводов (их количества, времени их поступления и скорости всасывания). F(t) — эталонная функция, характеризующая здоровую поджелудочную железу.
Рассмотрим случай диабета I типа, когда естественная секреция инсулина отсутствует, и отбросим вначале факторы физической нагрузки и неоднозначности действия внешнего инсулина. Примем также некую идеальную модель питания, когда человек, не испытывающий физических нагрузок (кроме самых необходимых и минимальных), ест в строго определенное время четыре или пять раз в сутки и за каждый прием пищи поглощает строго определенное количество углеводов. В этих идеализированных условиях мы имеем единственную переменную величину: набор искусственных инсулинов, каждый из которых характеризуется определенными функциями действия f(t0, t), где t0 — параметр, определяющий время введения инсулина, а t — текущее время. Примеры этих функций представлены на рисунке 8.2, на графиках 2–8, при t0=0. Набор данных функций, который мы обозначим Ф, конечен, но их имеется не пятьдесят разных видов, а гораздо больше: напомним еще раз, что с точки зрения математики функции для одного и того же инсулина, введенного в разное время, подобны, но сдвинуты по оси времени (то есть с формальной точки зрения это разные функции). Сколько же их? Если считать, что инъекции инсулина разрешены только в дневные часы и могут делаться в любой из временных точек с 8 утра до 23 вечера со скважностью один час, то каждая из приведенных на рисунке 8.2 функций (при t=0, что соответствует 8 утра) порождает еще пятнадцать, сдвинутых по оси t на один, два и так далее часа. Эта дискретизация, разумеется, условна, но позволяет оценить общее количество функций базиса — в данном случае их порядка восьмисот. Чтобы окончательно формализовать обозначение базисных функций, вынесем зависимость от параметра t0 из скобок и запишем Ф = fj(t) .
Наша задача: с помощью двух — семи функций из набора Ф аппроксимировать эталонную функцию F(t): где Сj — вес функции fj или, иными словами, j-я доза соответствующего инсулина Напомним, что проблема аппроксимации некой реальной функциональной зависимости с помощью набора базисных функций (обычно заданных математически) является широко распространенной задачей, возникающей в науке и технике. Она решается с помощью метода наименьших квадратов (МНК), с помощью которого можно определить весовые коэффициенты С. Стандартные базисы, которые используются в этом случае — степенной ряд и ряд Фурье — позволяют минимизировать отклонение между левой и правой частями написанного выше выражения и добиться того, что эталонная функция F(t) с высокой точностью представляется с помощью суммы базисных функций, умноженных на весовые коэффициенты. Но высокая точность достигается путем суммирования большого количества членов, то есть разложения F(t) с использованием большого количества базисных функций. В нашем случае это невозможно, так как нельзя делать десятки инъекций инсулина в день.
Итак, если в разложение для F(t) включены две функции, то этот случай соответствует инсулинотерапии с двумя инъекциями пролонгированного инсулина утром и вечером; если включены семь функций, то этот случай соответствует базис-болюсной терапии, когда утром и вечером делаются инъекции смешанным инсулином и в течение дня совершаются еще три подколки «коротким» инсулином. Формально, как уже отмечалось, задача сводится к определению коэффициентов Сj с помощью метода наименьших квадратов и может быть легко решена.
Однако насколько хорошим будет такое решение? Мы могли бы вычислить отклонение между эталонной функцией и аппроксимирующей ее, но в этом нет необходимости: мы сразу можем сказать, что в случае базис-болюсной терапии качество будет вполне приемлемым, а при двух инъекциях пролонгированного инсулина — более низким. Данный вывод следует из вида функций нашего базиса и вида F(t): эталонная функция содержит резкие пики и области плавного «фона», и ее никак нельзя удовлетворительно аппроксимировать парой функций с широкими горбами (см. рис. 8.2, график 3).
Получается, что базис-болюсная терапия — наилучший из выходов? Очень сомнительно! Напомним, что мы рассматривали задачу аппроксимации в идеализированных условиях, а теперь нужно ввести реальные параметры: неоднозначность действия инсулина (зависимость от точки инъекции, температуры и прочих неясных обстоятельств); неизбежные ошибки в питании (ошибки в математическом смысле — то есть разброс количества поглощенных углеводов и скоростей их всасывания); физические нагрузки, влияние которых невозможно учесть с достаточной точностью. Три указанных фактора в каждый момент времени являются величинами неопределенными, но к тому же они действуют одновременно, и влияние их суперпозиции — это, образно говоря, неопределенность в квадрате.
Мы можем учесть их только эмпирически — и, разумеется, довольно грубо.
Итак, каковы же выводы? 1. Мы в принципе не можем добиться стопроцентной компенсации диабета «ручным способом», поскольку эта задача сводится к попытке аппроксимации естественной (но уже не эталонной!) функции F(t), которая строго не определена и зависит от параметров, которые нам в точности неизвестны — питания и физической нагрузки. Функции базиса, с помощью которых мы пытаемся приблизиться к F(t), тоже «плывут», они тоже строго не определены (неоднозначность действия внешнего инсулина). К тому же, по условиям задачи, мы не можем использовать много базисных функций — ведь каждый член в приведенном выше разложении означает укол шприцом.
2. В виду неясности ситуации, описанной в предыдущем пункте, мы не можем качественно промоделировать своими силами, с помощью инсулина, диеты и режима, тонкий механизм функционирования поджелудочной железы. Условно говоря, там, где нужен компьютер, мы крутим рукоять старинного арифмометра.
3. Но арифмометр тоже способен давать результаты — пусть не с такой скоростью и не с такой точностью, как современный компьютер. Мы не можем добиться идеальной компенсации диабета, но мы способны приблизиться к ней — не предельно близко, но все же на такое расстояние, когда риск из-за ошибок аппроксимации минимален — при существующем уровне медицины. Совершенно очевидно, что ошибки аппроксимации будут тем меньше, чем меньше влияние неопределенных и неучтенных факторов, которыми мы в какой-то степени способны управлять, — питания и физических нагрузок. Если хотите, считайте данный вывод математическим обоснованием необходимости диеты, режима и всех процедур контороля заболевания.
Сейчас дела обстоят именно так, но это не означает, что песня закончилась минорной нотой.
2. Программные средства для компенсации диабета
В последние годы имеет место ряд попыток компенсации диабета с помощью программ, рассчитывающих дозу инсулина, необходимую для погашения определенного количества пищи. Такие программы созданы за рубежом, но мы рассмотрим отечественный вариант — если понимать под Отечеством нашу страну в недавнем прошлом. Эта оговорка необходима, так как Юрий Петрович Кадомский, автор программы «Диабет 2000», живет в Риге. Ему немногим более пятидесяти лет, он офицер в отставке, инженер; кроме того, он опытный диабетик, что позволило ему создать разумный алгоритм подсчета компенсационных доз инсулина.
Хотя компьютерный вариант компенсации диабета могут использовать только самые «продвинутые» больные, такой опыт и, особенно, объективная оценка его результатов представляются нам очень интересными. Конечно, у каждого свой диабет, но тем важнее выяснить, будет ли достигнута компенсация в любом, даже в самом сложном случае болезни, с помощью строгого и методичного расчета доз инсулина в зависимости от питания, индивидуальных особенностей организма и физических нагрузок. В первом разделе этой главы мы утверждали, что идеальная компенсация недостижима, но данный вывод не стоит абсолютизировать — ведь между «идеальным» и «удовлетворительным» имеется достаточно большой зазор, в котором лежит понятие очень хорошей компенсации. Мы полагаем ее такой, когда подавляющую часть времени вы компенсированы практически так же, как здоровый человек (не отказывая себе при этом ни в чем), и лишь изредка, в непредвиденных ситуациях, ваш сахар выходит за рамки 3,3–7,8 ммоль/л. Возможно, один из путей к подобной компенсации лежит через компьютерные программы.
Мы благодарим Ю.П.Кадомского, который сделал краткое описание своей методики расчетов и предоставил его нам для публикации в книге. Этот материал приводится ниже в несколько сокращенном виде.
ПРОГРАММА «ДИАБЕТ 2000». В настоящее время стали появляться компьютерные программы, позволяющие рассчитывать дозы короткого инсулина для компенсации пищи. Одной из таких программ является «Диабет 2000». При разработке программы автор исходил из следующих посылок: 1. Сахарный диабет не лечится, но он компенсируется. То, что организм не способен вырабатывать, ему необходимо получать извне, но в строго определенных дозах. Чем точнее эти дозы — а значит, чем точнее имитация работы здоровой поджелудочной железы, — тем меньше больной человек отличается от здорового.
Краеугольным камнем компенсации диабета является точный расчет компенсационных доз и их соответствие поступающим с пищей углеводам.
2. На сахар крови влияют не только углеводы, но и другие компоненты питания — белки и жиры. Учет лишь одних углеводов не позволит достичь точной компенсации.
3. Диабет индивидуален; иными словами, у каждого свой диабет. Следовательно, и подход к расчету доз должен быть индивидуальным, базирующимся на особенностях конкретного организма и конкретного диабетического заболевания.
4. Точность расчетов напрямую зависит от точности вводимых исходных данных. Ориентация на «средние» яблоки, картофелины, ложки и т. д. не дает необходимой точности в расчете дозы инсулина.
5. Расчет доз не должен ограничиваться лишь случаем простых продуктов с известными характеристиками (т. е. с известным количеством белков, жиров и углеводов в 100 граммах продукта). Наш рацион состоит из сложных многокомпонентных блюд, представляющих собой смеси простых продуктов, приготовленных по соответствующему рецепту. Следовательно, должна быть возможность расчета доз и для них.
6. Разные продукты по-разному влияют на сахар крови — как количественно, так и по времени. Например, глюкоза и фруктоза являются простейшими углеводами, но их влияние на уровень сахара крови совершенно разное. Следовательно, при расчете дозы надо учитывать гликемические индексы продуктов.
7. Естественно, в расчетах должны приниматься во внимание виды применяемых инсулинов и их особенности.
8. Хотя расчет производится на компьютере, человек не должен быть постоянно к нему привязан. В самом деле, не возьмешь ведь с собой компьютер, отправляясь в гости, на рыбалку, на пикник или прогулку по городу, которая должна закончиться в кафе.
Изложенные выше соображения были реализованы в программе «Диабет 2000», написанной на объектно-ориентированном языке высокого уровня Visual Basic 6.0 под операционные системы Windows 98000.
Расчет компенсационных доз производится на основании следующих исходных данных: характеристик продуктов, которые пользователь программы желает употребить в пищу. При этом под характеристиками понимается не хлебная единица, а содержание белков, жиров и углеводов в 100 граммах продукта. Эти общепринятые характеристики приведены в различных справочниках, кулинарных книгах, на упаковках и т. д.; веса каждого продукта в граммах; индивидуальных компенсационных коэффициентов, учитывающих потребности конкретного больного в инсулине и зависящих от тяжести и стажа болезни, способности или неспособности поджелудочной железы вырабатывать собственный инсулин и ряда других факторов.
В программе приняты два компенсационных коэффициента: коэффициент К1, являющийся основой для расчета доз в случае продуктов, богатых углеводами. Смысл коэффициента: К1 характеризует количество инсулина, необходимого для компенсации одной ХЕ. Эта величина у каждого своя, и она требует определения на этапе настройки программы; коэффициент К2, являющийся основой для расчета доз в случае продуктов, практически не содержащих углеводы, но богатых белками и жирами. Смысл коэффициента: К2 характеризует количество инсулина, необходимого для компенсации 100 ккал. Этот коэффициент также индивидуален и требует определения на этапе настройки программы.
Определение компенсационных коэффициентов производится опытным путем. Для определения К1 следует взять монокомпонентный продукт, богатый углеводами (например, хлеб или гречневую кашу), после чего производится подбор дозы инсулина, необходимой для компенсации определенного количества этого продукта, измеренного в ХЕ. Условием компенсации является приведение сахара крови к исходному значению через определенное время (для обычных «коротких» инсулинов — через 3,5–4 часа). Это означает, что вся съеденная пища компенсирована полностью и без перебора. Затем введенная доза делится на количество ХЕ, и получается коэффициент К1 — количество инсулина, нужное для компенсации одной ХЕ. Аналогичным образом определяется коэффициент К2 на продукте, не содержащем углеводы (разница лишь в том, что в случае К2 учитывается калорийность съеденного продукта). Более детально процедура настройки рассмотрена на сайте автора http:// juri.dia.ru. В начале использования программы коэффициенты автора равнялись соответственно '31.7 и 0.7, а через два с половиной года, после достижения стабильной компенсации, они уменьшились до 0.8 и 0.1.
Другим важным источником данных для расчета являются характеристики продуктов, хранящихся в базе данных. В настоящий момент вместе с программой поставляется обширная база данных, охватывающая характеристики множества продуктов. Разумеется, ее можно расширять и корректировать; при этом объем базы данных не ограничен ничем, кроме гастрономических пристрастий пользователя. Кроме простых продуктов с известными характеристиками предусмотрен ввод многокомпонентных блюд с заранее неизвестными характеристиками. На этапе ввода программа сама сделает анализ рецептов этих блюд, рассчитает их характеристики и внесет блюда в базу данных. В дальнейшем, на основе этого анализа, программа будет применять к тому или иному блюду нужный алгоритм расчета.
Последним исходным данным является количество продукта, которое пользователь желает съесть и для которого надо рассчитать дозу. Этот параметр зависит от точности определения веса продукта или блюда, так что на первом этапе пользования программы необходимы бытовые весы. В дальнейшем, по мере приобретения опыта расчетов, нужда в них постепенно отпадает.
Как уже отмечалось выше, на компенсацию влияет вид применяемого инсулина или комбинации инсулинов. Так, автор одновременно использует «короткий» хумулин Р и «сверхбыстрый» хумалог. В этом случае программа рассчитает не только общую компенсационную дозу, но и даст рекомендации по пропорциям разделения этой дозы по видам инсулина.
Рассмотрим работу с программой — например, в том случае, когда пользователь решил пообедать (при этом не важно, сколько пищи он собрался съесть). Его задача такова: сообщить компьютеру, что именно и в каком количестве он желает съесть, нажать кнопку «Расчет» и моментально получить компенсационную дозу. Фактически для этого надо лишь «нащелкать» мышкой в расчетную таблицу нужные продукты из базы данных и указать их количество. Программа рассчитывает не только компенсационную дозу, но и характеристики трапезы: количество в ней ХЕ, белков, жиров и углеводов, их процентное распределение, распределение килокалорий по компонентам пищи. Разумеется, предусмотрена оперативная коррекция компенсационных коэффициентов, зависящая от внешних факторов (времени суток, физической нагрузки). Для определения компенсационных доз в отрыве от компьютера имеется возможность сделать расчеты заранее и распечатать их (такие предварительные расчеты производятся по базе данных для фиксированного количества продуктов 25 г, 50 г, 75 г и т. д. Подобную распечатку можно взять с собой в гости, за город, в ресторан и тому подобные места. Определение доз с помощью распечатки менее точно, чем дома, но все же точнее, чем «на глаз».
В заключение необходимо отметить, что программа русскоязычная и распространяется автором бесплатно. Подробнее с ней можно ознакомиться на упоминавшемся выше сайте http://juri.dia.ru. Там же имеется форум, где обсуждается использование программы, даются рекомендации и ответы на вопросы пользователей и где можно скачать программу с ее подробным описанием. В описании рассмотрена не только технология использования программы, но и другие моменты, касающиеся диабета.
Глава 24 Ближайшие и отдаленные перспективы
Развитие любой науки, в том числе — медицинской, эволюционно-революционный процесс: идет время, накапливаются знания, происходит взрыв; потом — новый период плавного развития — и новый взрыв. Открытие инсулина в 1921 году — это взрыв или, как говорилось в главе 19, первая революция в лечении диабета, до которой больные с ИЗСД были обречены на неминуемую гибель. Создание сахароснижающих препаратов в 1956 году — следующий взрыв; эта вторая революция позволила многим людям с диабетом лечиться диетой и таблетками, без инъекций инсулина. Внедрение в медицинскую практику широкой гаммы инсулинов и новых пероральных лекарств, выпуск шприцов, шприц-ручек и глюкометров — третий взрыв, растянувшийся на несколько лет; он обеспечил диабетикам не просто жизнь, а жизнь активную и достойную. Закономерен вопрос: чего же еще мы ожидаем от очередных революций? Вероятно, их тоже будет не меньше трех, и первая уже не за горами. Вспомните, в разных местах нашей книги мы говорили о работах по созданию перорального инсулина — то есть такого препарата, который не вводился бы с помощью шприца, а имел бы вид таблетки, которую можно глотать, или представлял собою вдыхаемый спрей. Это в колоссальной степени облегчило бы жизнь больных диабетом, разом аннулировав шприцы, шприц-ручки, флаконы и гильзы с жидким препаратом инсулина. Это имело бы огромное значение для тех, кому необходимо перейти на инсулин, но они боятся уколов, медлят, рискуют остатками здоровья и жизнью. Воистину это стало бы революционным преобразованием — особенно в том случае, если был бы создан не только пероральный инсулин, но и неинвазивный глюкометр.
Впрочем, заметим, что такой глюкометр и пероральный инсулин явились бы революцией скорее для больных, чем для врачей. Эти открытия изменят способ контроля и форму введения инсулина, но не суть последней процедуры; по-прежнему остается вопрос выбора инсулинотерапии, по-прежнему пациенты с ИЗСД будут подвержены гипогликемии и кетоацидозу, и, разумеется, не исчезнет нужда соблюдать диету и режим.
Информация о том, что пероральный инсулин вотвот будет создан — или уже создан, — временами появляется в диабетичесих изданиях либо бродит среди больных и врачей в качестве некоего оптимистического слуха. Так, в начале 1998 года в газете «ДиаНовости» появилось сообщение о том, что группа американских и японских специалистов, работающих над этой проблемой, находится уже на половине пути к успеху. Этой командой разработана гелевая капсула, содержащая инсулин и покрытая, как можно предполагать, многослойной защитной полимерной оболочкой. Капсула попадает в желудок, и в его кислой среде первый слой оболочки начинает постепенно растворяться. Затем капсула перемешается в тонкий кишечник, где среда менее кислая и агрессивная; здесь, вероятно, открывается доступ к внутреннему пористому защитному слою, через который начинает просачиваться инсулин. После этого препарат всасывается в кровь через стенки тонкого кишечника. В 2001 году в десятом номере журнала «Профиль» промелькнула небольшая заметка о создании российскими учеными перорального препарата рансулин, в котором молекулы инсулина соединены с полимерным гелем, который «транспортирует» инсулин через пищеварительную систему и предохраняет его от разрушения. В заметке, однако, упоминалось, что завершена лишь первая фаза клинических испытаний препарата, а о том, насколько успешны испытания, не было сказано ничего.
Но дело не стоит на месте, и мы рады сообщить читателям, что пероральные инсулины короткого действия уже созданы. Над этой проблемой трудятся несколько крупных компаний (в частности, «Эли Лилли», «Ново Нордиск», «Пфайзер»), и на конференциях Американской Диабетической Ассоциации в 2001 и 2002 годах был представлен ряд обнадеживающих докладов. Один из этих новых препаратов, получивший название оралин, является спреем, в котором инсулин соединен с защитным полимером; лекарство поступает через рот и быстро всасывается через слизистую щек. Имеются данные о применении оралина совместно с метформином для лечения ИНСД, причем результаты весьма положительные. Сообщения об аэрозольном (вдыхаемом) инсулине представлены компанией «Пфайзер»; этот препарат заменяет «короткий» инсулин, и его уже испытали на нескольких сотнях больных диабетом I типа. Данная информация вполне достоверна, но не нужно ее переоценивать — новые лекарственные формы инсулинов дойдут до нас только через несколько лет, после долгих и тщательных испытаний.
Имеется еще один путь для совершенствования инсулина. Представьте себе препарат с несколькими пролонгаторами действия, причем каждый пролонгатор «выключается» в определенное время, высвобождая определенную дозу инсулина. Например, таким образом: в 9 часов утра вы вводите 40 ЕД, и десять единиц медленно разворачиваются в течение суток, обеспечивая необходимый «фон», восемь единиц действуют практически сразу — для завтрака, четыре — через три часа, для ланча, восемь — еще через четыре, для обеда, восемь — через пять часов, для ужина, и последние две — для перекуса перед сном. Иными словами, мы получаем инсулин или смесь инсулинов, в которой промоделирован процесс естественной секреции в зависимости от времени суток. «Многопиковый» инсулин с вложенной в него программой! Отчего бы и нет? Ведь найден же способ продления действия «короткого» инсулина! Но все-таки сколь удивительными ни оказались бы новые препараты, с их помощью не решить главной проблемы: своевременного и адекватного инсулинного отклика на уровень глюкозы крови. Обеспечивая отклик шприцом или таблеткой, а не иным, более совершенным способом, мы остаемся рабами своего лекарства, а в более широком смысле — заложниками и невольниками болезни. Возможны ли тут радикальные решения? Да, безусловно. Видимо, это будет второй взрыв — или прорыв — в способах выживания при диабете, обусловленный достижениями в сфере электроники.
Первый шаг в этом направлении — инсулиновый дозатор (помпа или наружный насосик) — уже сделан, причем довольно давно. Представьте себе прибор размером с сигаретную пачку с капсулой для хранения инсулина, который вы носите на поясе в области живота; в нем имеется трубка с иглой (катетером), постоянно введенной под кожу (что, конечно, его большой недостаток) и таймер (измеритель времени), который можно программировать — и, в соответствии с заданной программой, он сам введет вам в нужное время нужную дозу. Это еще не искусственная поджелудочная железа, но уже полный аналог того «запрограммированного» многопикового инсулина, о котором мы говорили выше (этим прибором, кстати, пользуется Николь Джонсон, «мисс Америка-98», упомянутая в главе 22).
Впрочем, как полагают специалисты, вряд ли за таким дозатором будущее; ведь он — всего лишь усовершенствованная шприц-ручка, и не подходит для спортсменов и людей, занятых физическим трудом: игла раздражает кожу, а наличие отверстия в коже увеличивает вероятность инфекции. В России к этому добавляется еще одна проблема — с обслуживанием. Нам известны двое петербуржцев, получивших такой прибор в подарок от фирмы-производителя, но не использующих его в настоящее время. Причина проста — необходимо покупать за рубежом дорогостоящие капсулы с инсулином.
Чтобы создать искуственную поджелудочную железу (ИПЗ), необходимо избавиться от внешнего программирования; такой прибор, снабженный компьютером, должен как настоящая железа с а м знать, когда и сколько ввести инсулина. Главной проблемой в данном случае является не автоматическая инъекция инсулина, а определение сахара крови — не зная этого, компьютер ИПЗ не сумеет рассчитать потребную в данный момент дозу инсулина. А в этом-то и заключается вся суть дела — ведь ИПЗ должен обеспечить точно такую же автоматическую обратную связь глюкоза — инсулин, какая осуществляется поджелудочной железой.
Мы уже знакомы с методами анализа сахара крови, и поэтому упомянутая выше проблема может показаться нам неразрешимой. Анализы проводятся наполовину химическим методом, и для них, в той или иной степени, нужны тест-полоски и другие специальные реактивы — а также человеческие руки. Можно ли выполнить данный анализ полностью автоматическим путем? Без вмешательства человека? Да еще при условии, что прибор-анализатор должен быть небольшим?.. Крайне сомнительно.
Вспомним, однако, что смысл анализа, произведенного человеком, заключается в том, чтобы получить видимый глазами результат, то есть число. Компьютеру число тоже понятно — и, получив его, компьютер может рассчитать нужную дозу инсулина и дать команду на инъекцию. Но это наш, человеческий способ мышления, плохая попытка заставить компьютер воспроизвести наши манипуляции с глюкометром и шприцом.
А зачем это, собственно, нужно? Ведь поджелудочная железа никаких чисел не определяет и работает не по дискретно-цифровому, а по аналоговому принципу.
Это значит, что количество глюкозы в крови напрямую, без всякой оцифровки, инициирует секрецию определенного количества инсулина — то есть «потенциал» глюкозы порождает адекватный отклик «потенциала» инсулина. Такие процессы в электронике давно известны и носят название аналоговых.
Итак, ИПЗ можно создать, а раз можно, то ее и создали — лет пятнадцать назад. Пятнадцать лет! Этот факт вас несомненно поразит. Вы спросите — где же эта искусственная поджелудочная железа? Почему вы никогда не видели подобного прибора? Лишь потому, что он слишком велик и несовершенен — либо мал, дорог, но опять-таки несовершенен.
Прибор «Стационарная искусственная поджелудочная железа» — «Биостатор» фирмы «Майлз» (США — Германия) представляет собой установку в виде чемоданчика с откинутой крышкой, и носить его с собой постоянно нельзя. «Биостатор» содержит три основных блока: анализатор с датчиком глюкозы и системой непрерывного взятия крови; управляющий компьютер (к которому, в старом варианте прибора, подключалось печатающее устройство, а в современной модификации — монитор); насос с системой для оперирования с растворами инсулина и глюкозы. Словом, если вы захотите воспользоваться этой ИПЗ, то вам придется возить ее с собой на тележке.
Разумеется, «Биостатор» предназначен не для этого. С его помощью ликвидируют острые состояния при диабете, к нему подключают больных с лабильным течением болезни, нормализуя им сахара. Осуществляется такая операция за 3–7 приемов, и время каждого подключения составляет от четырех часов до суток.
Для индивидуального использования предназначен другой прибор, который называется «Искусственная бета-клетка» (ИБК). По внешнему виду ИБК представляет собой пластинку размером 2х2 сантиметра, которая имплантируется в воротную вену больного (воротная вена — один из крупных кровеносных сосудов).
Прибор состоит из пяти функциональных блоков: сенсора, чувствительного к сахару крови, микрокомпьютера, блока питания (батарейки), насоса для введения инсулина и резервуара с высококонцентрированным инсулином. Уже это краткое описание порождает ряд вопросов: на сколько хватает инсулина?.. на сколько хватает батарейки?.. какова цена такого устройства?..
сколь часто его следует заменять?.. Ответим, что прибор, разработанный в начале восьмидесятых годов, был довольно несовершенен: его ресурсов хватало на небольшой срок, операцию по вживлению приходилось повторять часто, а кроме того существовала проблема тканевой несовместимости — то есть внешнее покрытие ИБК не соответствовало тканям человеческого организма, что вызывало реакцию отторжения. В наше время некоторые вопросы уже сняты, и современный ИБК может функционировать в организме больного в течение трех-пяти лет. Но стоит такой прибор очень дорого, и применять его в массовых масштабах пока что нельзя.
Мы полагаем, что третий прорыв в лечении диабета будет наиболее радикальным и многообещающим, связанным не с электроникой, а с достижениями в области физиологии. Возможно, будет найден способ восстановления активности бета-клеток (то есть полного или частичного излечения диабета); возможно, будут разработаны надежные методы по имплантации чужеродных бета-клеток или по замене поджелудочной железы. Такие операции уже выполняются на протяжении ряда лет и состоят в том, что больному пересаживают половину здоровой железы от донора. Процедура очень непростая и дорогая, причем основной проблемой, возникающей при операциях такого рода, является иммунологическая несовместимость тканей — организм больного отторгает чужеродную железу, не желает признавать ее своей.
Вариант имплантации выглядит почти фантастическим, но не будем забывать, сколь актуальна данная проблема: ведь кроме диабета существуют и другие заболевания поджелудочной железы, и самое страшное из них — рак. Так что не одним диабетикам может понадобиться новая поджелудочная железа. Вы спросите, откуда же ее взять? Свиная вряд ли подойдет, да и чужая человеческая тоже, тем более что на всех диабетиков не напасешься половинок желез от доноров. Но вспомните об опытах по клонированию, информация о которых все чаще проскальзывает в СМИ. В чем их значение и смысл? Конечно же, не в том, чтобы создать копию овцы или даже человека в любом из возможных вариантов, от разумного и равноправного двойника до бессмысленного биоробота. Главная задача — научиться клонировать человеческие органы, чтобы их пересадка не вызывала отторжения из-за несовместимости тканей. Трудно прогнозировать, когда будут разработаны подобные методы, когда они станут надежными, сравнительно дешевыми и доступными, но рано или поздно это случится.
Чтобы добавить вам оптимизма (особенно людям молодым, которым еще жить и жить), прибегнем к следующей аналогии. Природный рубин, извлеченный из копей, — драгоценный камень, который стоит очень дорого, тысячи долларов за крупный экземпляр. Но мы давно научились выращивать искусственные рубины и другие драгоценные камни; искусственный рубин (корунд) называется так лишь потому, что создан человеком, но это самый настоящий рубин, с той же кристаллической решеткой и тем же самым химическим составом, что и природный камень. Вдобавок хорошие корунды лучше природных рубинов — в них меньше трещинок, инородных включений и т. д. (собственно, по этим трещинкам и включениям опытный ювелир и отличает природный камень от искусственного). Во всем остальном эти кристаллы адекватны, но природный — редкость, а искусственные делают сотнями килограммов и цена им — рубль в базарный день. Этот пример не единственный; во многих случаях мы, люди, сумели не только воспроизвести природные процессы, но и получить в результате очень качественную и очень дешевую продукцию.
Теперь рассмотрим два других направления, упомянутых выше и связанных с имплантацией бета-клеток или восстановлением их активности. Имплантация чужеродных бета-клеток уже осуществляется: пересаживают свиные бета-клетки, которые вводятся путем инъекции. Бета-клетки внедряются в переднюю брюшную стенку, живут и дают инсулин — правда, недолго, от двух месяцев до пяти лет; затем клетки погибают. Однако больной получает облегчение, и метод имплантации при дальнейшем его совершенствовании может оказаться решением нашей проблемы. Например, в плане клонирования — ведь вырастить бета-клетку всетаки проще, чем целую поджелудочную железу.
Что касается самого радикального метода лечения, связанного с восстановлением активности собственных бета-клеток, то над этой задачей работают во многих институтах, но говорить об успехе еще рано (хотя, по мнению специалистов, полная победа над диабетом будет достигнута к 2015 году). Можно сказать лишь одно: у детей, подростков и молодых больных есть реальный шанс навсегда избавиться от диабета в срок своей жизни.
Завершая книгу, коснемся проблемы неинвазивного глюкометра. Описывая «Глюковоч» в главе 16, мы отметили, что данный прибор не может заменить глюкометр, однако его сравнение с уже существующими методами позволяет сделать некоторые выводы. Прежде всего вспомним, какие есть возможности для «домашнего анализа» сейчас и какова цена вопроса.
Во-первых, существуют полоски для определения сахара в моче. Достоинства способа: дешевый и безболезненный. Недостатки: низкая точность (только качественный результат), анализ требует уединения.
Во-вторых, существуют полоски для определения глюкозы крови. Недостатки: инвазивный анализ (то есть болезненный), низкая точность (30–40 % ошибки, в лучшем случае полуколичественный результат), высокая цена (стоимость полоски около 0,4 доллара).
В-третьих, существует глюкометр. Достоинство: точность (количественный результат). Недостатки: инвазивный анализ, высокая цена (100 долларов — глюкометр, 0,5 доллара — полоска).
В-четвертых, появился «Глюковоч». Достоинство: непрерывный мониторинг в течение половины суток.
Недостатки: их много, и они перечислены в главе 16.
Итак, пока что глюкометр лучше всего — прибор надежный, точность высокая, и теперь, после появления «Глюковоча», можно сказать, что он не самый дорогой. Однако заметим, что «глюкометрическая эйфория» давно прошла, и в настоящий момент мы ясно видим недостатки глюкометра. Разумеется, хорошо, что он есть, раз нет ничего лучшего. Однако необходим более совершенный прибор, предназначенный для неинвазивного мониторинга глюкозы. Это гипотетическое устройство должно отвечать следующим требованиям: а) Нужен постоянный и непрерывный мониторинг — то есть желательно иметь прибор наподобие часов: взглянул на табло и увидел, какой сейчас сахар крови.
б) Прибор должен быть неинвазивным — то есть не требовать прокола пальца, не причинять боли. А любой глюкометр — сущий кровосос! Если, как положено, делать анализ 4–5 раз в день, то пальцы скоро будут исколоты.
в) Анализы дороги: 2–2,5 доллара в день, 60–75 долларов в месяц — даже по западным меркам это дорого, а по российским, китайским, индийским просто нереально. Есть, конечно, богатые страны, где глюкометры и полоски выдают бесплатно, но держав таких немного, и на самом деле за все платит налогоплательщик. Мы же с вами хотим иметь прибор без расходного материала в виде полосок — такое устройство, в котором заменяется лишь батарейка.
Над таким неинвазивным глюкометром, позволяющим делать дешевый анализ путем прикладывания к нему пальца, запястья или другой части тела, которую не стыдно обнажить в публичном месте, трудятся в разных странах и компаниях уже лет десять. Один из способов состоит в том, что разработчики пытаются выяснить, существует ли четкая зависимость между электрическими параметрами крови и уровнем глюкозы в ней. Есть надежда, что такой прибор появится на рынке в ближайшие три — пять лет.
Достарыңызбен бөлісу: |