Электрические свойства. Уд. электропроводность М. при комнатной темп-ре ~10-8'—10-6 Ом-1 •м-1. Характерное св-во М. как проводников — линейная зависимость между плотностью тока и напряжённостью приложенного электрич. поля (закон Ома). Носителями тока в М. явл. эл-ны проводимости, обладающие высокой подвижностью. Согласно квантовомеханич. представлениям, в идеальном кристалле эл-ны проводимости (при отсутствии тепловых колебаний крист. решётки) не встречают сопротивления на своём пути. Существование у реальных М. электрич. сопротивления — результат нарушения периодичности крист. решётки. Эти нарушения (дефекты) связаны как с тепловым движением атомов, так и с наличием примесных атомов, вакансий, дислокаций и др. статич. дефектов в кристаллах. На колебаниях и дефектах происходит рассеяние эл-нов. Мерой рассеяния служит длина свободного пробега l -— ср. расстояние между двумя последовательными столкновениями эл-нов с дефектами. Величина уд. электропроводности а связана с l соотношением:
где n — концентрация эл-нов проводимости (~1022 — 1023 см-3), е— заряд эл-на, рF=2ћ(3n/8)1/3— граничный фермиевский импульс (см. Ферми поверхность). Зависимость или уд. электросопротивления =-1 от темп-ры Т связана с зависимостью l от Т. При комнатных темп-рах l~10-6 см. При темп-pax, значительно превышающих Дебая температуру, сопротивление обусловлено гл. обр. тепловыми колебаниями атомов и возрастает с темп-рой линейно:
=ост(1+T). (2)
Постоянная , наз. температурным коэфф. сопротивления, имеет при темп-ре T=0°C типичное значение: =4•10-3 К-1. При более низких темп-pax, когда влиянием тепловых колебаний на рассеяние эл-нов можно пренебречь, сопротивление практически перестаёт зависеть от темп-ры. Это предельное значение сопротивления наз. остаточным. Величина ост характеризует концентрацию дефектов в решётке М. Удаётся получить столь чистые (с в е р х ч и с т ы е) и свободные от дефектов М., что у них ост в 104—105 раз меньше уд. сопротивления при комнатной темп-ре. В сверхчистых М. l достигает 10-2 см. При низких темп-pax (T<<D, d— дебаевская темп-pa) определяется ф-лой:
=ост +AT2 + BT5, (3)
где А и В — величины, не зависящие от Т. Член ВТ5 связан с рассеянием эл-нов на тепловых колебаниях атомов, а член АТ2— со столкновениями эл-нов друг с другом. Ф-ла (3) явл. приближённой.
У нек-рых М. и металлидов при определ. темп-ре, наз. критической, наблюдается полное исчезновение сопротивления — переход в сверхпроводящее состояние (см. Сверхпроводимость). Критич. темп-ры чистых М. лежат в интервале от неск. сотых долей К до 9 К, у металлидов — выше, напр. у Nb3Ge критич. темп-ра 23,2 К.
Если металлич. образец, по к-рому течёт ток, поместить в пост. магн. поле, то в М. возникают явления, обусловленные искривлением траекторий эл-нов в магн. поле в промежутках между столкновениями (гальваномагнитные явления). Среди них важное место занимают Холла эффект и магпиторезистиеный эффект. В магн. полях ~104—105 Э и более при низких темп-pax у всех металлич. монокристаллов наблюдается осциллирующая зависимость электросопротивления от магн. поля (Шубникова — де Хааза эффект).
При нагревании М. до высоких темп-р (напр., тугоплавких М. до ~2000—2500°С) наблюдается «испарение» эл-нов с поверхности М. (термоэлектронная эмиссия). Эмиссия эл-нов с поверхности М. происходит также под действием сильных электрич. полей E~107 В/см в результате туннельного просачивания эл-нов через сниженный полем потенц. барьер (см. Автоэлектронная эмиссия). Наблюдаются также явления фотоэлектронной эмиссии, вторичной электронной эмиссии и ионно-электронной эмиссии. Перепад темп-ры вызывает в М. появление электрич. тока или термоэдс (см. Термоэлектрические явления).
Тепловые свойства. Теплоёмкость М. обусловлена как ионным остовом (решёточная теплоёмкость Ср), так и электронным газом (электронная теплоёмкость Сэ). Хотя концентрация эл-нов проводимости в М. очень велика и не зависит от темп-ры, электронная теплоёмкость наблюдается у большинства М. только при низких темп-pax, порядка неск. К (т. к. электронный газ в М. вырожден, темп-pa вырождения ~104—105 К). Величину Сэ измеряют, пользуясь тем, что при уменьшении темп-ры Ср убывает пропорц. Т3, а Сэ — пропорц. Т. Для Cu (одного моля) Cэ=0,9•10-4 RT, для Pd Сэ=1,6•10-3RT, где R — газовая постоянная. Эл-ны проводимости, обеспечивающие электропроводность, участвуют и в теплопроводности М. Между уд. электропроводностью и электронной частью теплопроводности существует простое соотношение, наз. Видемана — Франца законом.
Взаимодействие металлов с электромагнитными полями. Перем. электрич. ток при достаточно высокой частоте течёт по поверхности М., не проникая в его толщу (см. Скин-эффект). Эл.-магн. поле частоты проникает в М. лишь на глубину скин-слоя толщиной 8. Напр., для Cu при =108 Гц =6•10-4 см. В таком слое поглощается часть эл.-магн. энергии. Другая часть переизлучается эл-нами и отражается (см. Металлооптика). В чистых М. при низких темп-рах обычно l>. При этом напряжённость поля существенно изменяется на длине свободного пробега, что проявляется в хар-ре отражения эл.-магн. волн от поверхности М. (а н о м а л ь н ы й с к и н - э ф ф е к т).
Сильное пост. магн. поле Н существенно влияет на радиочастотные св-ва М. Если на М., помещённый в сильное пост. магн. поле Н, падает эл.-магн. волна, частота к-рой кратна частоте прецессии эл-нов проводимости вокруг силовых линий поля Н, наблюдаются резонансные явления (см. Циклотронный резонанс). При определ. условиях в толще М., находящемся в пост. магн. поле, могут распространяться слабо затухающие эл.-магн. волны, т. е. скин-эффект исчезает. Электродинамнч. св-ва М., помещённого в магн. поле, сходны , со св-вами плазмы в магн. поле и явл. источником информации об эл-нах проводимости.
Для эл.-магн. волн оптич. диапазона М., как правило, практически непрозрачны. Тонкая структура линий характернстич. рентг. спектров, соответствующая квант. переходам эл-нов из зоны проводимости на более глубокие уровни, отражает распределение эл-нов проводимости по уровням энергии.
Магнитные свойства. Все переходные металлы с недостроенными f- и d-электронными оболочками явл. парамагнетиками. Нек-рые из них при определ. темп-pax переходят в магнитоупорядоченное состояние (см. ферромагнетизм, А нгпиферромагнетизм, Кюри точка). Магн. упорядочение существенно влияет на все другие св-ва М., в частности на электрич. св-ва: в электрич. сопротивление вносит вклад рассеяние эл-нов на колебаниях упорядоченной системы магн. моментов эл-нов (см. Спиновые волны).
411
Гальваномагн. явления при этом также приобретают специфич. черты.
Магн. св-ва всех остальных М. определяют эл-ны проводимости, дающие вклад как в диамагнитную, так и в парамагнитную восприимчивости М., и ионы, к-рые, как правило, диамагнитны (см. Диамагнетизм). Магн. восприимчивость для большинства М. сравнительно мала (~10-6) и слабо зависит от темп-ры. При низких темп-pax и в сильных магн. полях у всех металлич. монокристаллов наблюдается сложная осциллирующая зависимость суммарного магн. момента от поля Н (Де Хааза — ван Альфена эффект). Эффекты де Хааза — ван Альфена и Шубникова — де Хааза имеют общую природу.
Механические свойства. Многие М. и сплавы обладают комплексом механич. св-в, обеспечивающим их широкое применение в технике в кач-ве конструкц. материалов. Это в первую очередь сочетание высоких пластичности и вязкости со значительными прочностью, твёрдостью и упругостью, причём соотношение этих св-в может регулироваться в большом диапазоне с помощью механич. и термич. обработки М., а в сплавах — изменением (иногда незначительным) концентрации компонентов. Некоторые металлы (Zn, Sb, Bi) при комнатной температуре хрупки и становятся пластичными только при нагревании.
Исходной хар-кой механич. св-в М. явл. модуль упругости G, определяющий сопротивление крист. решётки упругому деформированию и непосредственно отражающий величину сил связи в кристалле. Сопротивление разрушению или пластич. деформации идеального кристалла велико (~10-1 G). Но в реальных кристаллах эти хар-ки, как и все механич. св-ва, определяются наличием дефектов, в первую очередь дислокацией. Перемещение дислокаций по плотноупакованным плоскостям приводит к скольжению — осн. механизму пластич. деформации М. (см. Пластичность). Важнейшая особенность М.— малое сопротивление перемещению дислокации в бездефектном кристалле. Это сопротивление особенно мало в кристаллах с чисто металлич. связью, к-рые обычно имеют плотно-упакованные структуры (ГЦК или ГПУ). Увеличение сопротивления пластич. деформации (по крайней мере, в этих кристаллах) связано со вз-ствием движущихся дислокаций с др. дефектами в кристаллах (с др. дислокациями, примесными атомами, внутр. поверхностями раздела). Вз-ствие дефектов определяется искажениями решётки вблизи них и пропорц. G. В результате большой плотности дислокаций и др. дефектов прочность М. возрастает.
В процессе деформации число дислокаций в крист. решётке увеличивается, соотв. растёт сопротивление пластич. деформации (д е ф о р м а ц и о н н о е у п р о ч н е н и е или н а к л ё п). По мере роста плотности дислокаций при пластич. деформации растёт неравномерность их распределения, приводящая к концентрации напряжений в местах сгущения дислокаций и зарождению очагов разрушения — трещин. Концентрации напряжений имеются и без деформации в местах скопления примесей, ч-ц др. фаз и т. п. Но, вследствие пластичности М., деформация вблизи скоплений предотвращает разрушение. Однако если сопротивление движению дислокации растёт, то это приводит к хрупкому разрушению.
• Френкель Я. И., Введение в теорию металлов, 3 изд., М.—Л., 1958; Абрикосов А. А., Введение в теорию нормальных металлов, М., 1972; Физические основы металловедения, М., 1955; Ш у л ь ц е Г., Металлофизика, пер. с нем., М., 1971; Уайэтт О. Г., Д ь ю-Х ь ю з Д., Металлы, керамики, полимеры, пер. с англ., М., 1979; Бернштейн М. Л., 3 а й м о в с к и й В. А., Механические свойства металлов, М., 1979.
М. И. Каганов.
МЕТАМАГНЕТИК, вещество, обладающее в слабых магн. полях св-вами антиферромагнетиков, а в полях напряжённостью выше 5—10 кЭ — св-вами ферромагнетиков. Типичными М. явл. слоистые соединения типа FeCl2, в к-рых слои ионов железа, обладающих магнитным моментом, отделены друг от друга двойным слоем немагн. ионов хлора. Слои магн. ионов представляют собой двухмерные ферромагнетики, внутри этих слоев между ионами имеется сильное ферромагнитное обменное вз-ствие (см. Ферромагнетизм). Между собой соседние слои магн. ионов связаны антиферромагнитно (см. Антиферромагнетизм). В результате в системе магн. моментов устанавливается упорядоченное состояние в виде слоистой магн. структуры из чередующихся по направлению намагниченности ферромагн. слоев. Нейтронографич. исследования (см. Нейтронография) подтвердили существование такой магн. структуры в
Кривая намагничивания метамагнетика FeBr2 (J— намагниченность образца, Н — напряжённость внеш. магн. поля). В поле Н—40 кЭ (при 4,2 К) в FeBr2 происходит фазовый переход I рода в ферромагн. состояние.
FeCl2, FeBr2, FeCO3 и др. М. Вследствие относительно слабой антиферромагн. связи между слоями и не очень большой магнитной анизотропии самих слоев внеш. магн. поля напряжённостью выше 5—10 кЭ могут превратить слоистый М. в однородный намагниченный ферромагнетик, что отражается на кривой намагничивания М. (рис.). Фазовый переход
I рода, при к-ром векторы намагниченности всех слоев М. устанавливаются параллельно приложенному магн. полю, наз. метамагнитным.
Часто термин «М.» распространяют на все антиферромагнетики, в к-рых эфф. магн. поле анизотропии НA (ответственное за ориентацию маги. моментов относительно кристаллографич. осей) больше (или равно) НE — эфф. поля антиферромагн. обменного вз-ствия.
• Л а н д а у Л. Д., Возможное объяснение зависимости восприимчивости от поля при низких температурах, Собр. трудов, т. 1, М., 1969; Боровик-Романов А. С., Антиферромагнетизм, в кн.; Антиферромагнетизм и ферриты, М., 1962 (Итоги науки. Физико-математические науки, т. 4); В о н с о в с к и й С. В., Магнетизм, М., 1971
А. С. Боровик-Романов
МЕТАСТАБИЛЬНОЕ СОСТОЯНИЕ (от греч. meta...— приставка, означающая здесь изменение, переход к ч.-л. другому, и лат. stabilis — устойчивый) в термодинамике, состояние неустойчивого равновесия физ. макроскопич. системы, в к-ром система может находиться длит. время, не переходя в более устойчивое (при данных условиях) состояние (фазу).
Существование М. с. связано с особенностями кинетики фазовых переходов. Фазовый переход начинается с возникновения зародышей новой фазы: пузырьков пара при переходе жидкости в пар, микрокристалликов при переходе жидкости в крист. состояние и т. п. Для образования зародышей требуются затраты энергии на создание поверхностей раздела фаз. Росту образовавшихся зародышей мешает значит. кривизна их поверхности (см. Капиллярные явления), приводящая при кристаллизации к повышенной растворимости зародышей тв. фазы, при конденсации жидкости — к испарению мельчайших капелек, при парообразовании — к повышенной упругости пара внутри маленьких пузырьков. Указанные факторы могут сделать энергетически невыгодными возникновение и рост зародышей новой фазы и задержать переход системы из М. с. в абсолютно устойчивое состояние при данных условиях. Фактором, способствующим сохранению М. с., может быть высокая вязкость в-ва, препятствующая, напр., установлению упорядоченного расположения молекул в аморфных тв. телах (кристаллизации стёкол).
М. с. часто встречается в природе а используется в науке и технике. С существованием М. с. связаны, напр., явления магн., электрич. и упругого гистерезиса, закалка стали, образование пересыщенных р-ров и т. п. В науч. исследованиях пар в перегретом состоянии использовался для регистрации треков заряж. ч-ц в Вильсона камере; в совр. пузырьковых камерах для тех же целей применяют находящиеся в М. с. жидкости.
• Л а н д а у Л. Д., Л и ф ш и ц Е. М., Статистическая физика, 3 изд., ч. 1, М., 1976, § 21, 162 (Теоретическая физика, т. 5); Ш т р а у ф Е. А., Молекулярная физика,
412
М.-Л., 1949; С а м о й л о в и ч А. Г., Термодинамика и статистическая физика, М., 1953; Рейф Ф., Статистическая физика, лер. с англ., М., 1972 (Берклеевский курс финики, т. 5).
Г. Я. Мякишев.
МЕТАСТАБИЛЬНОЕ СОСТОЯНИЕ квантовых систем, возбуждённое энергетич. состояние ат. систем (атомов, молекул, ат. ядер), в к-ром они могут существовать длит. время (квазистабильны). Метастабильными явл. такие возбуждённые состояния, квантовые переходи из к-рых в состояния с меньшей энергией, сопровождающиеся излучением (испусканием фотонов), запрещены отбора правилами (точными или приближёнными) и, следовательно, либо совсем не могут происходить, либо маловероятны. Мера метастабильности состояния — его время жизни =1/A, где А — полная вероятность перехода из данного состояния во все состояния с меньшей энергией. В предельном случае строго запрещённых переходов А=0, = и состояние стабильно. Обычно времена жизни для М. с. атомов и молекул составляют от долей секунды до неск. секунд.
Атомы и молекулы в М. с. играют важную роль в элем. процессах. В разреж. газах энергия возбуждения может длит. время сохраняться ч-цами в М. с. и затем передаваться др. ч-цам при столкновениях, что вызывает послесвечение. Процессы люминесценции сложных молекул связаны с наличием метастабильных молекул в триплетных возбуждённых состояниях, переходы из к-рых в основное синглетное состояние запрещены приближённым правилом отбора по спиновому квант. числу (S=0). О М. с. ядер см. Изомерия атомных ядер.
М. А. Ельяшевич.
МЕТАЦЕНТР, точка, от положения к-рой зависит устойчивость равновесия (остойчивость) плавающего тела. При равновесии на плавающее тело, кроме силы тяжести Р, приложенной в центре тяжести (ЦТ) тела (рис.), действует ещё выталкивающая сила А, линия действия к-рой проходит через т. н. центр водоизмещения — ЦВ (центр тяжести массы жидкости в объёме погружённой части тела).
[Положение метацентра М при устойчивом (a) и неустойчивом (б) равновесии плавающего тела.
В наиболее важном для практики случае, когда плавающее тело имеет продольную плоскость симметрии, точка пересечения этой плоскости с линией действия выталкивающей силы и наз. М. При наклонах тела положение М. меняется. Плавающее тело будет остойчивым, если самый низший из М. (иногда только его и наз.
М.) будет лежать выше центра тяжести тела.
МЕТАЦЕНТРИЧЕСКАЯ ВЫСОТА, возвышение метацентра над центром тяжести плавающего тела. М. в. служит мерой остойчивости судна. МЕТР (франц. metre, от греч. metron — мера) (м, т), единица длины, основная в СИ. До 1960 междунар. эталоном М. была штриховая мера длины — брусок из платиноиридиевого сплава, хранящийся в Междунар. бюро мер и весов в Севре (близ Парижа). Согласно принятому в 1960 11-й Генеральной конференцией по мерам и весам определению, «Метр — длина, равная 1650763, 73 длины волны в вакууме излучения, соответствующего переходу между уровнями 2р10 и 5d5 атома криптона-86». Гос. первичный эталон СССР для воспроизведения ед. длины — метра и передачи её размера др. мерам длины представляет собой комплекс аппаратуры, включающий интерферометры для точного измерения длин. Первичный эталон М. позволяет воспроизводить М. со ср. квадратическим отклонением, не превышающим 5•10-9м.
• ГОСТ 8.020-75. ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений длины.
МЕТРИКА ПРОСТРАНСТВА-ВРЕМЕНИ в теории относительности, задаёт расстояния (интервалы) между точками пространства-времени (событиями) и, т. о., полностью определяет геометрические свойства четырёхмерного пространства-времени. См. Относительности теория, Тяготение.
МЕТРИЧЕСКАЯ СИСТЕМА МЕР, совокупность единиц физ. величин, в основу к-рой положены 2 ед.: длины — метр и массы — килограмм. М. с. м. была разработана во Франции в 18 в. во время Великой франц. революции. По предложению комиссии из крупнейших франц. учёных метр был определён как десятимиллионная часть 1/4 длины парижского геогр. меридиана, килограмм как масса 1 дм3 дистиллированной воды при 4°С. Размеры, наименования и определения др. единиц М. с. м. (площади — кв. метр, объёма — кубич. метр и др.) были выбраны так, чтобы система не носила нац. хар-ра и могла быть принята всеми странами. Отличит. особенностью М. с. м. явился принцип десятичных соотношений при образовании кратных единиц и дольных единиц. Удачный выбор принципов, положенных в основу М. с. м., содействовал тому, что в 1875 17 стран, в т. ч. Россия, подписали Метрич. конвенцию для обеспечения междунар. единства и усовершенствования метрич. системы.
М, с. м. была допущена, к применению в России законом от 4.6.1899, проект к-рого был разработан Д. И. Менделеевым, и введена в кач-ве обязательной декретом СНК РСФСР
от 14.9.1918, а для СССР — постановлением СНК СССР от 21.7.1925. На основе М. с. м. возник целый ряд частных, охватывающих лишь отд. разделы физики или отрасли техники систем единиц и отд. внесистемных единиц. Развитие науки и техники, а также междунар. связей привело к созданию в сер. 20 в. на основе М. с. м. единой, охватывающей все области измерений системы единиц — Международной системы единиц (СИ), к-рая принята в кач-ве обязательной в СССР с 1982 (ГОСТ 8.417-81).
• Широков К. П., 50-летие метрической системы в СССР, «Измерительная техника», 1968, № 9; Б у р д у н Г. Д., Единицы физических величин, 4 изд., М., 1967.
К. Г. Широков.
МЕТРИЧЕСКИЙ ТЕНЗОР, совокупность величин, определяющих геом. свойства пространства (его метрику). В теории относительности М. т. определяет метрику пространства-времени.
МЕТРОЛОГИЧЕСКАЯ СЛУЖБА, обеспечивает единство измерений в стране (т. е. такое состояние измерений, при к-ром их результаты выражены в узаконенных ед. и погрешности измерений известны с заданной вероятностью), включая стандартизацию ед. физ. величин, их воспроизведение с помощью гос. эталонов, передачу размеров единиц всем применяемым в стране средствам измерений, гос. испытания новых образцов средств измерений, надзор за состоянием и применением уже находящихся в эксплуатации средств измерений, организацию гос. системы стандартных справочных данных (сбор и публикацию официальных данных о физ. константах и св-вах в-в и материалов), проведение метрологич. экспертизы стандартов, нормативно-техн. и проектной документации, надзор за соблюдением стандартов и кач-вом выпускаемой продукции и др. метрологич. мероприятия, а также участие в работах междунар. метрологич. организаций. Науч. сторону М. с. обеспечивают метрологич. институты, хранящие эталоны и ведущие науч. исследование по проблемам метрологии. В СССР М. с. подразделяется на государственную и ведомственную. Гос. М. с. возглавляет Гос. комитет СССР по стандартам (Госстандарт СССР).
• Метрологическая служба СССР, М., 1968; ГОСТ 1.25—76. Государственная система стандартизации. Метрологическве обеспечение. Основные положения.
К. П. Широков.
МЕТРОЛОГИЯ (от греч. metron — мера и logos — слово, учение), наука об измерениях и методах достижения повсеместного их единства и требуемой точности. К осн. проблемам М. относятся: общая теория измерений, образование единиц физ. величин и их систем, методы и средства измерений, методы определения точ-
413
ности измерений (теория погрешностей измерении), основы обеспечения единства измерений и метрологич. исправности средств измерений (законодательная М.), создание эталонов и образцовых средств измерений, методы передачи размеров единиц от эталонов образцовым и далее рабочим средствам измерений.
Первоначально М. занималась описанием разл. рода мер (линейных, вместимости, веса, времени), а также монет, применявшихся в разных странах, и нахождением соотношений между ними (теперь это область историч. М.). Поворотным моментом в развитии М. стало заключение в 1875 Метрич. конвенции (17 государствами, в т. ч. Россией), учреждение Междунар. бюро мер и весов и создание эталонов метрич. мер. Совр. М. опирается на физ. эксперимент высокой точности, она использует достижения физики, химии и др. естеств. наук, но вместе с тем находит свои оптим. решения задач изучения св-в физ. объектов.
Общая теория измерений окончательно ещё не сложилась, в неё входят сведения и обобщения, полученные в результате анализа и изучения измерений и их элементов: физ. величин, их единиц, средств и методов измерений, получаемых результатов измерений.
В М., как и в физике, физ. величина трактуется как св-во физ. объектов (систем), общее в качеств. отношении для многих объектов, но в количеств, отношении индивидуальное для каждого объекта, т. е. как св-во, к-рое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (напр., масса, темп-pa, скорость движения).
Для получения объективной количеств. оценки величины выбирают единицу этой величины (для нек-рых величин — шкалу физической величины). Единица — это физ. величина (конкретная), числовое значение к-рой по условию принято равным единице. С развитием науки от случайного выбора единиц отд. величин перешли к построению систем единиц. В М. рассматриваются теор. аспекты связей между физ. величинами и принципы построения систем единиц, а также конкретные системы.
Каждое из измерений представляет собой физ. опыт, выполняемый с помощью одного или нескольких спец. техн. средств (средств измерений), нроградуированных в принятых единицах. Для достижения единства измерений (т. е. такого состояния измерений, при к-ром их результаты выражены в узаконенных ед. и погрешности измерений известны с заданной вероятностью) должны производиться, в частности, правильная градуировка и периодич. поверка применяемых в стране средств измерений. Для этого необходимы эталоны единиц и парк образцовых средств измерений. М. изучает способы воспроизведения единиц с помощью эталонов и пути повышения их точности, а также методы передачи размеров единиц (методы поверки).
Большой раздел М. посвящён методам нахождения оценок погрешностей измерений, для чего используется аппарат теории вероятностей и матем. статистики.
Законодательная М. рассматривает вопросы, связанные с достижением единства измерений и единообразия средств измерений и нуждающиеся в регламентации и контроле со стороны государства. Для проведения в жизнь всех необходимых для этого мероприятий в СССР организована метрологическая служба.
• Маликов С. Ф., Тюрин Н. И., Введение в метрологию, 2 изд., М., 1966; Бурдун Г. Д., Марков Б. Н., Основы метрологии, 2 изд., М., 1975; Ш и р о к о в К. П., Об основных понятиях метрологии, «Тр. метрологических ин-тов СССР», 1972, в. 130.
К. П. Широков.
МЕХАНИКА [от греч. mechanike (techne) — наука о машинах, искусство построения машин], наука о механич. движении матер. тел и происходящих при этом вз-ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или их ч-ц в пр-ве. В природе — это движение небесных тел, колебания земной коры, воздушные и морские течения и т. п., а в технике — движения разл. летат. аппаратов и транспортных средств, частей двигателей, машин и механизмов, деформации элементов разл. конструкций и сооружений, движения жидкостей и газов и мн. др. Рассматриваемые в М. вз-ствия представляют собой те действия тел друг на друга, результатами к-рых явл. изменения скоростей точек этих тел или их деформации, напр. притяжения тел по закону всемирного тяготения, взаимные давления соприкасающихся тел, воздействия ч-ц жидкости или газа друг на друга и на движущиеся в них тела.
Под М. обычно понимают т. н. классич. М., в основе к-рой лежат Ньютона законы механики, а предметом её изучения явл. движения любых матер. тел (кроме элементарных частиц), совершаемые со скоростями, малыми по сравнению со скоростью света. Движение тел со скоростями порядка скорости света рассматриваются в относительности теории, а внутриат. явления и движение элем. ч-ц изучаются в квантовой механике.
При изучении движения матер. тел в М. вводят ряд абстрактных понятий, отражающих те или иные св-ва реальных тел; ими являются: 1) м а т е р и а л ь н а я т о ч к а — объект пренебрежимо малых размеров, имеющий массу; это понятие применимо, когда тело движется поступательно
или когда в изучаемом движении можно пренебречь вращением тела вокруг его центра масс. 2) Абсолютно твёрдое тело — тело, расстояние между двумя любыми точками к-рого всегда остаётся неизменным; это понятие применимо, когда можно пренебречь деформацией тела. 3) Сплошная изменяемая среда; это понятие применимо, когда при изучении движения изменяемой среды (деформируемого тв. тела, жидкости, газа) можно пренебречь мол. структурой среды. При изучении сплошных сред прибегают к след. абстракциям, отражающим при данных условиях наиболее существ. св-ва соответствующих реальных тел: идеально упругое тело, пластич. тело, идеальная жидкость, вязкая жидкость, идеальный газ и др. В соответствии с этим М. разделяют на: М. матер. точки, М. системы матер. точек, М. абсолютно тв. тела и М. сплошной среды. Последняя в свою очередь подразделяется на теорию упругости, теорию пластичности, гидродинамику, аэродинамику, газовую динамику и др. В каждом из этих подразделов в соответствии с хар-ром решаемых задач выделяют: статику — учение о равновесии тел под действием сил, кинематику — учение о геом. св-вах движения тел и динамику — учение о движении тел под действием сил. Изучение осн. законов и принципов, к-рым подчиняется механнч. движение тел, и вытекающих из этих законов и принципов общих теорем и ур-ний составляет содержание т. н. общей, или теоретической, М. Разделами М., имеющими самостоят. значение, явл. также теория колебаний, теория устойчивости равновесия и устойчивости движения, теория гироскопа, механика тел переменной массы, теория автоматич. регулирования, теория удара и др. Важное место в М., особенно в М. сплошных сред, занимают эксперим. исследования, проводимые с помощью разнообразных механич., оптич., электрич. и др. физ. методов и приборов. М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соответствующих обобщениях находит приложение в оптике, статистич. физике, квант. М., электродинамике, теории относительности и др. (см., напр., Действие, Канонические уравнения механики, Лагранжа функция, Лагранжа уравнения в общей механике, Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики разреженных газов, магнитной гидродинамики и др. одновременно используются методы и ур-ния как теор. М., так и термодинамики, мол. физики, теории электричества и др. Важное значение М. имеет для мн. разделов астрономии, особенно для небесной механики.
414
Достарыңызбен бөлісу: |