Разложение суммы квадратов в однофакторном да



бет10/24
Дата13.07.2024
өлшемі2.64 Mb.
#502950
1   ...   6   7   8   9   10   11   12   13   ...   24
Ответы по билетам

x2



x1

Рис. 4. Схема метода Бокса–Уилсона

Рассмотрим в качестве примера использование метода Бокса−Уилсона для поиска максимума функции


. (6.11)
Допустимая область изменения переменных: 0х120, 0х210, 1х315. Начальная точка поиска х0= =(3,2,4). Линейное приближение будем строить в окрестности начальной точки, задаваемой условиями: , i=1,2,3. Значения i желательно подбирать такими, чтобы приращения функции по каждому из аргументов были сопоставимы, то есть

. Примем 1=1, 2=2, 3=3. В соответствии с (6.1) стандартизованная переменная , если , и при .
Линейная модель требует для своей оценки не менее четырех экспериментов. Воспользуемся ДФЭ 23-1 с ГС: (табл. 16).
Таблица 16

i

х1ст

х1

х2ст

х2

х3ст

х3

y

1

1

4

1

4

1

7

40,8

2

-1

2

1

4

-1

1

26,2

3

1

4

-1

0

-1

1

24,4

4

-1

2

-1

0

1

7

25,4

В последнем столбце табл.16 содержатся значения функции (6.11) для исходных переменных, то есть 40,8=у(4,4,7) и так далее.


МНК-оценки коэффициентов линейной модели составят:
; ; .
Отнормируем полученные компоненты градиента, поделив их на максимальное значение : b1=3,4/4,3=0,79, b2=1, b3=0,91. Движение в направлении градиента представлено в табл.17.
Таблица 17

Формулы для вычисления компонент вектора

Номера компонент вектора

у

1-я

2-я

3-я

х0

3

2

4

31,3

i

1

2

3




bi

0,79

1

0,91




bii

0,79

2

2,73




x0+1bii

3,79

4

6,73

39,9

x0+2bii

4,58

6

9,46

46,4

x0+3bii

5,37

8

12,19

50,6

x0+4bii

6,16

10

14,91

52,6

Движение в направлении градиента после четвертого шага невозможно из-за ограничения на х3. Теперь следует определить градиент в точке x0+3bii. Поскольку темп роста функции замедлился на последних шагах, область линейного описания следует сузить, уменьшив значения i.




12. Симплекс-метод экспериментальной оптимизации.

Последовательный симплексный метод Этот метод требует проведения минимально возможного числа опытов при определении направления движения.


Симплексом в n-мерном пространстве называют многогранник с (n+1)-й вершиной. Если расстояния между вершинами симплекса одинаковы, такой симплекс называют регулярным. Симплексный метод включает в себя следующие основные процедуры:
1. Линейное преобразование входных переменных с таким расчетом, чтобы изменение каждой из них на единицу одинаково сказывалось бы на изменении выходной переменной.
2. Построение регулярного симплекса и реализация опытов в вершинах симплекса.
3. Отбрасывание вершины с минимальным значением целевой величины и построение нового симплекса, который образуется оставшимися вершинами исходного симплекса и новой вершиной, получаемой зеркальным отображением отброшенной вершины относительно противоположной ей -мерной грани исходного симплекса. Координаты этой новой вершины рассчитываются по формуле: ,
где − номер отброшенной вершины.
4. Проведение эксперимента в вершине и возврат к п. 3. Если оказывается, что выходная переменная в новой вершине приняла значение меньшее, чем в остальных вершинах симплекса, то следует возвратиться к предыдущему симплексу. Во избежание зацикливания в качестве отбрасываемой выбирают вершину, в которой выходная переменная имеет величину, следующую по порядку за наихудшей вершиной симплекса. Аналогично следует поступать, если новая вершина выходит за пределы симплекса.
5. Если при перемещении симплекса за шагов некоторая вершина сохраняет свое положение, то симплекс совершит оборот относительно этой вершины. Это означает достижение области оптимума. Другим условием достижения оптимума является выполнение неравенства: , где  – малая величина (порог), – среднее значение выходной величины в вершинах симплекса.
К числу достоинств симплексного метода наряду с экономичностью по числу опытов и простотой вычислений следует отнести также возрастание эффективности метода с ростом числа входных переменных, устойчивость выделения направления движения, поскольку оно определяется только соотношением целевых величин, а не их абсолютными значениями.
Графическая иллюстрация симплексного метода при двух входных переменных приведена на рис.5. Здесь поверхность отклика задается линиями уровня.

x2

x1

Рис. 5. Схема последовательного симплексного метода


Достарыңызбен бөлісу:
1   ...   6   7   8   9   10   11   12   13   ...   24




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет