Учебное пособие «История и методология биологии и биофизики»



бет35/57
Дата13.07.2016
өлшемі12.91 Mb.
#196489
түріУчебное пособие
1   ...   31   32   33   34   35   36   37   38   ...   57

3.15.7. Транспирация растений
Начало экспериментальных исследований транспирации растений относится к первой четверти XVIII в., однако научный подход к объяснению этого явления наметился лишь в середине XIX в. Обнаружение определяющей зависимости транспирации от устьиц привлекло особое внимание к изучению транспирационного аппарата растений.

Первое исследование движения устьиц провел Г. Моль (1856), который показал, что величина устьичных отверстий определяется тургором замыкающих клеток и зависит от света, тепла и влажности воздуха. Он же обратил внимание на присутствие в замыкающих клетках хлоропластов, синтезирующих осмотические вещества, и таким образом влияющих на работу устьиц и на транспирацию. В этом же направлении вел исследования Унгер (1857), опубликовавший в 1862 г. большую работу о транспирации. С. Швенденер (1883) высказал мысль, что устьица обеспечивают не только испарение, но и усвоение СО2. Представление об активной роли замыкающих, а не прилегающих к ним эпидермальных клеток, как это считал Дейтгеб (1886), окончательно утвердил сын Чарлза Дарвина Ф. Дарвин (1898). Действие различных лучей спектра на работу устьиц первым исследовал Коль (1895). Он установил, что красные и синие лучи, т. е. лучи, поглощенные хлорофиллом, вызывают открывание устьиц.

Кроме устьичной транспирации в 1878 г. была обнаружена еще и кутикулярная (Хенель). Определения количеств испаряемой воды (Габерландт, 1877; Хенель, 1879, 1880) показали, что эта величина различна в зависимости от природы самого растения и условий его произрастания.

Многое для изучения природы транспирации в 50-е годы сделал Ю. Сакс. В противоположность Шлейдену Сакс подошел к изучению испарения у растений не как к физическому, а как к физиологическому процессу, имеющему важное биологическое значение для жизни растений. Так, он обнаружил, что испарение с поверхности листа происходит менее интенсивно, чем с такой же поверхности воды. Сакс в еще большей степени, чем его предшественники, связал действие испарения с поглощающей деятельностью корневой системы. Он показал, что транспирация может измениться в зависимости от температуры и характера почв, в которых находятся корни растений.

Опыты П. Я. Крутицкого (1875), Бюргерштейна (1876) и Веска (1880) еще более расширили знания об испарении срезанных ветвей и листьев, находящихся на растении, о зависимости испарения от состава и концентрации растворов, поглощаемых корнями растений. Проводилось много определений потребления воды культурными растениями. Из внешних факторов изучали в основном влияние на транспирацию влажности воздуха и ветра. Утверждения об усилении испарения под действием света без учета теплового излучения или влияния на устьица, как отметил Тимирязев (1892), оказались несостоятельными. Все эти исследования велись преимущественно в лабораторных условиях и не касались проблемы засухоустойчивости растений, которая в силу благоприятных климатических условий не была актуальной для Западной Европы.

Необходимость всестороннего изучения данной проблемы с особой остротой встала перед русскими физиологами растений в связи с сильной засухой 1891 г., широко охватившей юг России и приведшей к гибели от голода многих тысяч людей. Почвоведы В. В. Докучаев (1892), П. А. Костычев (1893) и А. А. Измаильский (1893) предложили ряд приемов для лучшего сохранения влаги в почве, а К. А. Тимирязев (1892) первый из ботаников обратил внимание на биологические основы засухоустойчивости растений. Он показал, что лишь небольшая часть воды, поступающей в растение, используется им для синтеза органических веществ («организационная вода»), а большая ее часть («расхожая вода») испаряется. Вслед за французским агрохимиком Т. Шлезингом Тимирязев окончательно доказал, что интенсивность испарения не влияет на количество питательных растворов и минеральных веществ, поступающих в растения из почвы. Рассматривая взаимодействие между транспирацией и фотосинтезом, Тимирязев впервые высказал суждение об антагонистическом характере этих процессов: полезное для растений снижение расходования воды путем замыкания устьиц влечет за собой прекращение фотосинтеза, и наоборот, при фотосинтезе усиливается испарение необходимой растению воды. Более широко развернулись исследования водного режима растений в XX в.



3.15.8. Дыхание и брожение

Изучение ассимиляционных процессов, протекающих в растении, велось одновременно с разносторонними исследованиями диссимиляционных процессов и, прежде всего, дыхания и брожения. Не касаясь развития представлений относительно биохимической сущности и микробиологической природы этих явлений, назовем лишь физиологические аспекты этих проблем.

Во второй половине XIX в. впервые появляются специальные сообщения о дыхании растений. В 1850-1851 гг. фармацевт Гарро установил разобщенность процессов дыхания и фотосинтеза, показав затем непрерывность первого из них и наличие его во всех частях растительного организма. Это способствовало утверждению мнения об идентичности процессов дыхания растений и животных. Оба они рассматривались как медленное сгорание внутри тканей с выделением тепла. Однако в последней четверти XIX в. становилось все более очевидным несоответствие явлений дыхания и сгорания вначале в отношении животных, а затем и растений. Лишь спустя полвека окончательно было доказано, что при дыхании растений кислород не окисляет непосредственно молекулы органических веществ, а вступает в реакцию после ряда анаэробных превращений этих соединений (цикл Кребса).

Большое число исследований было посвящено изучению влияния на дыхание количества и качества света, концентрации кислорода и углекислого газа, температуры и других факторов. Изучая действие света на дыхание, И. П. Бородин (1876) заложил основу разработанного позднее В. И. Палладиным (1886-1896) учения о различии между дышащим субстратом и дыхательным материалом. Палладин (1893) впервые отметил различную интенсивность дыхания у зеленых и этиолированных листьев и объяснил это наличием в клетках первых большего количества не только сахаров, но белков и нуклеопротеидов. Это наблюдение еще раз подтверждало предположение А. Е. Зайкевича (1877) о связи дыхания с углеводным питанием и являлось как бы иллюстрацией к обстоятельному труду А. С. Фаминцына «Обмен веществ и превращение энергии в растениях» (1883), в котором дыхание рассматривалось как процесс, тесным образом связанный с углеродным (воздушным) и минеральным (почвенным) питанием растений.

Исследования дыхательного коэффициента, проведенные Боннье и Манженом (1886) и Палладиным (1886, 1894), показали, что его величина может быть равна единице, а также быть меньше или больше ее. Наблюдая изменение интенсивности дыхания в прорастающих семенах, Бородин (1875), А. Мейер (1875) и Л. А. Ришави (1877) проследили эту зависимость графически, установив так называемую большую кривую дыхания растений, очень сходную с открытой незадолго до того Саксом большой кривой роста.

В 1872 г. Л. Пастер обнаружил у растений явление анаэробного дыхания, которое протекало в бескислородной среде с образованием спирта и углекислого газа. Дальнейшее исследование этого типа дыхания (Мюнц, 1876, 1878; Трефельд, 1876; Де-Лука, 1878) показало, что оно широко распространено в растительном мире. Как и нормальное дыхание, оно способно изменяться под воздействием внешних условий (Детмер, 1892; Палладин, 1892, 1894; Худяков, 1894).


3.15.9. Рост растений
Во второй половине XIX в. были проведены интересные исследования в области роста, раздражимости и движения растений. Объектами изучения роста были семена, побеги, корни, стебли, листья и растение в целом. В 1872 г. Сакс сконструировал самопишущий прибор для фиксирования скорости роста — ауксонометр, усовершенствованный в 1876 г. О. В. Баранецким. С помощью этого прибора Сакс дал графическое изображение скорости прироста растений в ходе вегетации, и полученная S-образная кривая была названа им большим периодом роста. Баранецкий (1879) изучал суточную периодичность роста и обнаружил, что у одних растений максимальный прирост происходит ночью или ранним утром, а у других — днем или вечером. По мнению Баранецкого, этот ритм связан с определенным ритмом биохимических процессов в листьях и в конусе роста, а эти процессы в свою очередь зависят от периодичности смены дня и ночи.

Рост растений в прошлом столетии отождествлялся с увеличением их объема и сводился к росту отдельных клеток. Сакс первым поднял вопрос о внутренних причинах роста вообще и растительных клеток в частности. В 1863 г. он высказал мысль, что причиной более интенсивного роста клеток весной и летом является более высокий тургор в это время, благодаря чему клеточная оболочка растягивается и создается возможность для отложения веществ. Такой взгляд разделяли многие ботаники. Однако Г. Краббе (1884) взял его под сомнение, а А. Випер (1887) установил, что тургор клеток весенней и осенней древесины одинаков. Кроме того, С. Швенденер и Краббе (1895) наблюдали остановку роста в зоне растущего стебля, несмотря на то, что тургорное давление в ней было равно давлению в зоне наибольшего роста, а Р. Хеглер (1893), механически растягивая растущую часть стебля, обнаружил уменьшение скорости его роста. Опытами Ф. Нолля (1887), Э. Цахариаса (1891) и Э. Страсбургера (1898) было доказано, что рост клетки может осуществляться как путем наложения (аппозиции), так и путем внедрения (интуссусцепции).

Много работ, в том числе русских исследователей, было посвящено изучению зависимости роста растений от условий освещенности, температуры, наличия в воздухе кислорода, углекислого газа, этилена. Я. Я. Вальц (1876), изучая рост корней в водных культурах, отметил, что свет усиливал рост и ветвление как при освещении листьев, так и еще в большей степени листьев и корней. Баталин (1872) и Сакс (1882) свидетельствовали о существовании связи между процессами роста и явлениями раздражимости, утверждая при этом наличие тесной зависимости между морфофизиологичеекими структурами растений и протекающими в них химическими процессами.
3.15.10. Раздражимость и движение растений
Значительно увеличилось во второй половине XIX в. число работ, посвященных изучению тропизмов — ориентировочных движений растений под действием одностороннего раздражителя, особенно силы тяжести и света, т. е. гео- и фототропизмов. Исследователей интересовали не только различные проявления тропизмов, но и их природа. Следуя за Т. Найтом (1806), В. Гофмейстер (1876) ошибочно утверждал, что геотропический изгиб обусловлен пассивным сгибанием под действием силы тяжести кончика корня, не содержащего механических тканей и поэтому находящегося в особом «мягко-пластическом» состоянии. Обнаружение А. Франком (1868) неравномерного роста различных сторон корня и стебля при их гео- и фототропизме ставило под сомнение выводы Найта и Гофмейстера о пассивности реакции растений. В 1869 г. Н. Н. Спешнев, повторив остроумный опыт Пино (1829) по врастанию корней в ртуть, показал, что их движение активно, так как кончик корня направляется вниз, преодолевая сильное выталкивающее действие ртути. Вскоре Т. Цессельский (1871) обнаружил, что при удалении верхушки корня последний терял способность реагировать на земное притяжение. Геотропизм плазмодиев слизистых грибов исследовал С. М. Розанов (1868).

При изучении фототропизма Н. Мюллер (1872) и Ф. Ольтманс (1887) установили, что положительная или отрицательная реакция растений зависит от интенсивности света. О. В. Баранецкий (1876) обнаружил отрицательный фототропизм миксомицетов на ранней стадии развития. Для устранения одностороннего действия силы тяжести или света при изучении движений растения Ю. Сакс (1879) сконструировал специальный прибор, назвав его клиностатом.

В 1865 г. вышла большая работа Ч. Дарвина «Движения и повадки лазящих растений». В ней Дарвин описал различные уже известные формы движения, в том числе фото- и геотропические, а также новое явление — гаптотропизм — изгибание растений в ответ на раздражение прикосновением (трением). Он провел опыты и наблюдения более чем над ста видами вьющихся и лазающих растений, собрал воедино сведения о механизме их движения, об устройстве их раздражимых органов, определил порог чувствительности растительных усиков в их различных частях, скорость реакции, открыл массу разнообразных приспособлений растений для лазания. Н. Ф. Леваковский (1866, 1867), изучая механизм движения мимозы от прикосновения и изменения этой реакции от температуры, влажности, аэрации и освещенности, связывал этот механизм с сократительными свойствами протоплазмы клеток мимозы. Процессами, проходящими внутри клеток, объяснял также таксические движения и А. Ф. Баталин (1870), выступая против тех, кто пытался объяснить сугубо физическим процессом возникновение электрических токов в растении.

В 1875 г. в исследовании о насекомоядных растениях Дарвин описал особые движения росянки, мухоловки и других, связанные с захватыванием мелких насекомых, попадающих на их листья и дающих растению азотсодержащую пищу. С конца 70-х годов прошлого века он начал работать над исследованием нутаций — вращательных движений растущих органов растений. Результаты обширных и многолетних исследований легли в основу написанной вместе с сыном Френсисом книги «О способности к движению у растений» (1880), где впервые были обстоятельно описаны вращательные движения растущих верхушек растений, особенно ярко выраженные у усиков и вьющихся стеблей. Эти движения Дарвин назвал циркумнутацией и объяснил их неравномерным ростом клеток то одной, то другой стороны верхушки стебля. В дальнейшем Нолль (1885), О. В. Баранецкий (1886) и Вортман (1887) изучали причины и закономерности круговой нутации стеблей и корней.

Однако ближе всех к раскрытию истинной природы тропических явлений подошел Ч. Дарвин (1880). В процессе тропизма он различал два этапа: 1) восприятие одностороннего действия раздражителя верхушками стеблей или корней и 2) изгибание этих органов в силу ускоренного роста клеток в зоне растяжения. В опытах с проростками канареечной травы Дарвин показал, что фототропический изгиб — сложное явление, состоящее из поступления светового раздражения, появления возбуждения, проведения его и конечной реакции, выражающейся в определенном движении. В основе гео- и фототропизмов, по его мнению, лежит «распространение вдоль органа некоторого вещества, содержащегося в верхушке» корня или стебля. Это было замечательное предвидение более чем за полвека до открытия физиологически активных веществ.

Критика воззрений Дарвина со стороны Ю. Визнера (1881), Ю. Сакса (1887), Г. де Фриза (1873), Г. Фиттинга (1903) и других, как и использование его высказываний о роли корневой верхушки отдельными фитопсихологами для утверждения наличия у растений элементов психики, не смогли дискредитировать ее. В 1893 г. В. А. Ротерт посредством точных опытов по удалению верхушек проростков доказал, что вывод Дарвина о разделении «сенсорной» и «моторной» зон у растений является правильным. Он установил скорость передачи геотропического импульса и доказал также, что после удаления «физиологической верхушки» корня она через несколько часов как бы вновь регенерирует.

В 80-90-е годы предметом изучения стали самые разнообразные тропизмы. В 1870—1880 гг. Визнер обнаружил тропические изгибы в красных и ультракрасных лучах, которые в дальнейшем объяснял как реакцию на тепловое раздражение. Термотропические изгибы спорангиеносцев изучал Ю. Вортман (1883), а у корней — И. Клернер (1891). Ван-Тигем (1884) и Ю. Вортман (1885) предприняли попытки установить природу термотропизма.

Э. Эльфвинг (1882) первый наблюдал искривление корней при пропускании электрического тока через воду, в которой они находились, и установил, что характер гальванотропического изгиба зависит от природы растений, а Брунхорст (1884-1889) определил зависимость этого явления от силы тока и характера проводящих их растворов. Изучению гальванотропизма растений были посвящены также работы русского ботаника Л. А. Ришави (1888).

В 1894 г. М. Миоши обнаружил, что гифы мукоровых грибков ориентируют свои движения в отношении распределения растворимых в воде веществ, т. е. проявляют хемотаксис. Г. Молиш (1884) установил, что хемотропными раздражителями могут быть не только жидкие или растворимые вещества, но и газообразные. Он наблюдал хемотропные искривления корней и пыльцевых трубок под влиянием отдельных газов и их смеси, назвав это явление аэротропизмом. Наблюдая за ростом растений в химических лабораториях, Д. Н. Нелюбов (1898) объяснил их различные изгибы содержанием в воздухе ничтожных количеств этилена и ацетилена.

Еще в 1872 г. Сакс показал на опыте с корнями проростков гороха существование гидротропизма, а в 80-х годах Молиш и Пфеффер доказали, что положительный гидротропизм корня определяется его кончиком. Тогда же были установлены такие новые понятия, как травматотропизм — явление изгибания растущих частей при их поранении (Дарвин, 1880) и реотаксис — движение организма под влиянием одностороннего действия тока воды (Иенсон, 1883).

С 50-х годов внимание ученых начали привлекать также движения, вызываемые раздражителем, действующим не односторонне, а равномерно на все растение (температурой, влажностью, освещенностью). Такие движения были названы настическими, или настиями. С. А. Рачинский (1857) полагал, что изменение положения листьев при переходе от дня к ночи связано с изменением тургора паренхимы листовых сочленений. Франка (1870) и Сакса (1879) интересовали причины дорзовентрального направления роста хвои, ветвей тисса и ели.
3.15.11. Экспериментальная морфология растений
В середине XIX в. в естествознании стало формироваться новое направление — экспериментальная биология, и одним из действенных ее звеньев стала физиология растений и прежде всего исследования в области развития растений. Изучение этого вопроса до середины XIX в. заключалось в прослеживании морфологических изменений растений от эмбриональных стадий до взрослого состояния. Однако уже в 1862 г. русский ботаник А. Н. Бекетов стал говорить о необходимости «открыть причины растительных форм», считая важнейшими факторами формообразования физиологические функции растений и их взаимодействие с внешними условиями.

В 1863 г. Н. Ф. Леваковский одним из первых поставил ряд опытов о действии искусственно создаваемых условий среды на форму растений. А. Ф. Баталин (1875) установил, что для цветения луковичных многолетников необходимо временное действие пониженных температур, а студент Судзиловский (1890) в опытах с озимой рожью пришел к выводу, что на ранней стадии развития озимых хлебов им необходимо влияние низких температур. В 1884 г. В. И. Ковалевский обнаружил зависимость скорости развития некоторых культурных растений от продолжительности «солнечного озарения», т. е. длины дня.

Большая серия опытов по изучению влияния различных внешних естественных условий на форму растений была поставлена Г. Фехтингом (1878-1882), открывшим явление полярности у растений, и Г. Боннье (1884, 1896), выращивавшим одинаковые культуры в горах и на равнине. В 80-е годы начал работать немецкий ботаник Г. Клебс, поставивший своей задачей вместо простого описания внешних форм проникнуть во внутреннюю сущность их образования. В результате десятилетних экспериментов (1896) он показал, как изменением условий внешней среды можно добиться перехода от одного способа размножения некоторых водорослей и грибов к другому, изменяя таким образом цикл их развития. Более широко свои исследования по управлению развитием не только низших, но и высших растений Клебс развернул в XX в. К тому же времени относятся важные исследования И. В. Мичурина в этом направлении, которые он начал в конце девятнадцатого столетия.

Таким образом, во второй половине прошлого века физиология растений окончательно оформилась в одну из самостоятельных биологических дисциплин с четко ограниченными проблемами, методами и задачами. Наиболее интенсивно развивались те ее направления, которые были связаны с изучением обмена веществ (фотосинтез, минеральное и азотное питание, дыхание, проникновение и перемещение питательных веществ). Расширялись начатые в первой половине XIX в. исследования водного режима, раздражимости и движения растений. Началось изучение новых проблем, в частности, устойчивости к неблагоприятным условиям — засухо-, морозо- и солеустойчивости. Зарождалось новое направление — экспериментальная морфология растений. Началось проникновение эволюционных идей в фитофизиологию, главным образом в форме попыток объяснить приспособительный характер процессов жизнедеятельности растений.


3.16. Изучение процесса размножения клеток
Одной из центральных проблем биологии была и остается проблема возникновения клеток в течение индивидуальной жизни растительного и животного организма, непосредственно связанная с общей проблемой непрерывной преемственности жизни на Земле, а также с выяснением закономерностей индивидуального развития и наследственности. Клеточная теория обосновывает мысль о структурном единстве двух основных ветвей органического мира; это единство представляет одну из основ эволюционной доктрины, так как оно свидетельствует об общности происхождения растений и животных.
3.16.1. Представления о способах возникновения клеток до начала 70-х годов. Первые неполные описания митозов в начале 70-х годов
В эпоху создания клеточной теории на рубеже 40-х годов XIX в. еще не было сколько-нибудь обоснованных взглядов на способы возникновения новых клеток. Шлейден и Шванн с их теориями клеткообразования за счет бесструктурного вещества, или цитобластемы, недалеко ушли от фантастических представлений их непосредственных предшественников — К. Шпренгеля, Л. Тревирануса, Ф. Распайля, П. Тюрпена и др.

Противоречивость и часто полная необоснованность суждений относительно клеткообразования, высказывавшихся в 20-30-е годы, породила скептическое отношение (например, у О. П. Декандоля) к возможности выяснения этого процесса вообще. Впрочем, вскоре (1832) появилась работа Б. Дюмортье, впервые описавшего деление клеток нитчатых водорослей путем образования перегородки посередине удлинившейся перед делением клетки. Свои наблюдения Дюмортье противопоставил ошибочным представлениям авторов, писавших об образовании клеток из зерен, находящихся внутри или вне клеток.

Первое описание деления клеток, сделанное Дюмортье, звучит так: «Развитие водорослей осуществляется добавлением новых клеток к старым... Концевая клетка удлиняется..., затем во внутренней жидкости происходит образование перегородки, которая разделяет клетку на две части; нижняя из них остается стационарной, тогда как концевая снова удлиняется, затем возникает новая перегородка и т. д... Этот факт образования перегородки у нитчатых водорослей хорошо объясняет процессы происхождения и развития клеток, остававшиеся до сих пор неизвестными». Три года спустя Гуго Моль подтвердил наблюдения Дюмортье и изобразил процесс деления клеток у нитчатых водорослей. Эти открытия не сразу встретили признание отчасти потому, что упомянутые авторы не видели в делящихся клетках ядер, а после обнаружения Броуном обязательного наличия ядер в любых растительных клетках работы, в которых не было упомянуто о ядрах, считались неполноценными. Так же объясняется, по-видимому, успех теории клеткообразо-вания, созданной Шлейденом (1838). Шлейден считал ядро важнейшей составной частью вновь образовавшейся клетки и поэтому предложил заменить неопределенное название «ядро» термином «цитобласт» (клет-кообразователь), надолго удержавшимся в ботанической цитологии.

В период с 40-х и до 70-х годов представления о способах возникновения новых клеток оставались довольно смутными. Допускали как «свободное» клеткообразование, не связанное с предсуществующими клетками, так и различные формы образования клеток из ранее существовавших — путем почкования, эндогенного возникновения и т. п. Наряду с этим считалось также возможным и размножение клеток делением.

Примеры деления клеток обнаруживались прежде всего на растительных объектах. Ф. Унгер, считавший, что «происхождение и рост клетки, ее размножение... в растении является одним из наиболее таинственных жизненных процессов», привел в своей книге, напечатанной в 1840 г. в России и премированной Петербургской Академией наук, помимо данных Моля также и свои данные о делении клеток у водорослей и зародышей, в сердцевинных клетках и клетках волосков высших растений. «Рост древесины,— писал Унгер,— покоится на последовательном делении камбиальных клеток». Впрочем, наряду с делением он признавал и «новообразование клеток в гомогенном слизистом веществе». Представление об одновременном существовании двух способов образования клеток — деления и спонтанного их возникновения — разделяли К. Негели, Н. Прингсгейм, а вначале также и Э. Страсбургер.

На зоологическом материале вопрос о размножении клеток делением решался, прежде всего, при наблюдении дробления яиц.

Механизм клеточного деления долго оставался невыясненным. Особенно неясным представлялось поведение ядер. Длительное время господствовало убеждение, что зародышевый пузырек, т. е. ядро ооцита, при созревании исчезает, а перед началом первого дробления в зрелом яйце появляется снова. Бедность хроматином ядер ооцита, зрелых яиц и первых бластомеров затрудняла наблюдения над этими ядрами не только на живых объектах, но и на фиксированных и окрашенных препаратах. И хотя внимательные наблюдатели уже в 60-е годы видели деление яйцевого ядра и ядер в бластомерах (например, см. И. И. Мечников «Эмбриологические исследования на насекомых», 1866), от внимания других исследователей (А. Вейсман, П. Т. Степанов и др.) деление ядер при созревании половых клеток и дроблении яиц ускользнуло.

Новообразование ядер допускалось еще в 70-е годы в эмбриональных клетках цыпленка (П. И. Перемежко) или в яйце стерляди (В. В. Заленский). Даже в конце 90-х годов можно было встретить утверждения, что клетки зародышевых листков возникают из безъядерных клеточных элементов (М. Д. Лавдовский, Н. Тишуткин).

К началу 70-х годов относятся первые серьезные исследования, касающиеся поведения ядер в делящихся клетках. Впрочем, еще в конце 40-х годов публиковались описания и рисунки, показывающие, что отдельные этапы сложных процессов непрямого деления клеток наблюдались уже тогда и были только неверно истолкованы. Так, В. Гофмейстер (1848, 1849, 1861) описывал в делящихся клетках фигуры, возникновение которых он сам объяснял коагуляцией белка, а на самом деле, как видно из его рисунков, он видел метафазы и анафазы митоза и изобразил эти фигуры как сбоку со стороны экватора, так и с полюса клетки.

На смену считавшейся одно время общепринятой «схеме Ремака», согласно которой при делении клетки сначала делится ядрышко, затем перетяжкой делится ядро и, наконец, клеточное тело, пришли наблюдения, касающиеся сложных явлений в ядре, предшествующих разделению тела клетки на две части перегородкой или перетяжкой. Открытие этих явлений применительно к растительным клеткам одно время безоговорочно связывали с именем московского ботаника И. Д. Чистякова. На самом деле работе Чистякова (1874) предшествовали исследования доцента Дерптского университета Э. Руссова по гистологии вегетативных и спорообразовательных органов, а также о развитии спор сосудистых тайнобрачных с соображениями о гистологии явнобрачных растений (1872). В материнских споровых клетках папоротников и хвощей, а также в материнских клетках пыльцы лилии Руссов видел на месте ядер круглые пластинки, состоящие из удлиненных, сильно преломляющих свет, палочек. У лилии эти «палочковые пластинки» состоят из особенно четких и крупных червеобразных телец. Когда материнская клетка споры или пыльцы разделяется посредине мелкозернистой протоплазменной перегородкой, с обеих сторон последней оказывается по отдельной «палочковой пластинке». Упомянув об аналогичных «палочковых пластинках», которые наблюдал Гофмейстер в материнских споровых клетках плауна Psilotum, Руссов заметил, что это образование не может быть артефактом, так как пластинки имеют правильную форму и характеризуются постоянным положением в клетках. В работе Руссова, едва ли не впервые, отчетливо описаны и изображены метафазные и анафазные пластинки, состоящие из отдельных хромосом,— картины, воспринятые этим автором как закономерное изменение клеточного ядра при его делении. Рассмотреть переход от одиночной «палочковой пластинки» к двойной Руссову не удалось.


Еще более отчетливо деление клеток описал годом позже Руссова немецкий зоолог А. Шнейдер на дробящихся яйцах прямокишечной турбеллярии Mesostomum. В обширной статье Шнейдера, посвященной строению прямокишечных турбеллярий, их сопоставлению с остальными плоскими червями и системе плоских червей, описание дробления яиц занимает всего четыре страницы, но оно, бесспорно, явилось выдающимся событием в истории открытия непрямого деления клеток. По наблюдениям Шнейдера, разумеется не во всех деталях точных, ядро оплодотворенного яйца «превращается в скопление сильно изогнутых нитей», которые в свою очередь превращаются в «толстые тяжи, расположенные сначала беспорядочно, а затем в виде розетки, которая лежит в... экваториальной плоскости... Зернышки, находящиеся в яйце, собираются в... меридиональных плоскостях... Когда начинается деление надвое, число тяжей увеличивается так, что часть их направлена к одному, а часть к другому полюсу. Наконец ядро перешнуровывается, тяжи поступают в дочерние клетки. Ряды зернышек вытягиваются в длину и могут быть прослежены из одной клетки в другую». При следующих дроблениях «ядро и клетка проделывают те же изменения, как при делении надвое... Таким образом, яйцевая клетка превращается в скоплеиие клеток,... из которых в конце концов строится зародыш... Эти наблюдения дают давно желаемое объяснение клеточного деления и особенно процессов дробления. Они впервые ясно показывают, какие сложные превращения может испытывать ядро (зародышевый пузырек) при клеточном делении». Из описаний и рисунков Шнейдера видно, что он, в сущности, установил основные стадии митоза — профазу, метафазу, образование ахроматиновой фигуры, увеличение числа хромосом перед расхождением и анафазу (раннюю и позднюю) и изобразил их в правильной последовательности. Шнейдер видел митозы не только в дробящихся яйцах, но и на поздних эмбриональных стадиях, а также у взрослых червей. Он справедливо полагал, что процессы, характерные для деления клеток у прямокишечных турбеллярий, имеют место и у других организмов.

Рис. 3.37. Телофаза и анафаза в клетках тычиночной нити традесканции. Справа рисунок В. Гофмейстера (1849)

Рис. 3.38. Деление клеток по Э. Руссову (1872)
Авторы исторических очерков, посвященных развитию представлений о делении клеток Э. Марк (1881) и Дж. Бейкер (1953-1955) также считают, что Шнейдер достаточно отчетливо, хотя, конечно, и не совсем полно, описал митотическое деление. Вполне четкой последовательной картины этого процесса ни Руссову, ни Шнейдеру нарисовать еще не удалось.

Рис. 3.39. Деление клетки по А. Шнейдеру (1873)
Не удалось этого сделать и Чистякову. Из приведенных в его работе (1874) описаний развития спор у хвоща и плауна следует, что Чистяков видел ахроматиновое веретено, по экватору которого располагается зернистый пояс (иногда двойной), состоящий из хромосом — «сосочков», и что половина веретена («полусферы») превращается в дочернее ядро. Важной заслугой Чистякова является опровержение распространенного тогда мнения о растворении ядра материнской клетки и о «свободном образовании» ядер дочерних клеток, а также утверждение, что дочерние ядра образуются в результате деления материнского ядра; впрочем, эту мысль Чистяков проводил не везде с достаточной последовательностью. Преемственность фаз митоза осталась для Чистякова неясной. Еще менее отчетливо охарактеризованы Чистяковым процессы клеточного деления в статье о развитии спор и пыльцевых зерен (1875). Ядра в материнских споровых клетках, но его словам, «возникают внутри породившего их ядра, что может быть сравнено со свободным образованием клеток внутри плазмы материнской клетки». Экваториальную хромосомную пластинку в микроспоре Isoetes Чистяков принял за образующийся фрагмопласт, т. е. пластинку, разделяющую дочерние клетки, тогда как Руссов сумел ясно отличить пограничное сгущение протоплазмы от материнской и дочерних хромосомных пластинок.

Рис. 3.40. Деление клетки по И. Д. Чистякову (1874)

Достарыңызбен бөлісу:
1   ...   31   32   33   34   35   36   37   38   ...   57




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет