VIII. Взаимное расположение двух прямых на плоскости Лобачевского.
1. Докажем следующую лемму.
Лемма 1. Если АВ || CD, то существует ось симметрии прямых
АВ и CD.
□ Пусть Р и Q— точки, лежащие соответственно на прямых АВ
рис.13 рис.14
и CD, a h и k — биссектрисы углов QPB и PQD (рис. 13). Так как АВ || CD, то луч h пересекает луч QD в некоторой точке Е. Тогда луч k пересекает отрезок РЕ в некоторой точке S.
Докажем, что точка S равноудалена от прямых АВ и CD. Обозначим через SH1, SH2 и SH3 — перпендикуляры, проведенные из точки S к прямым АВ, CD и PQ (рис. 13). Так как SH1 = SH3 и SH2 = SH3, то SH1 = SH2. Теперь ясно, что прямая d, содержащая биссектрису угла H1SH2, является осью симметрии прямых АВ и CD. Чтд.
Пользуясь этой леммой, легко доказать, что отношение параллельности направленных прямых удовлетворяет условию симметричности, т. е. справедлива теорема.
Теорема 1. Если АВ|| CD, то CD || АВ.
□ Пусть Р — произвольная точка прямой АВ, a d — ось симметричных прямых АВ и CD (см. лемму 1). Тогда точка Q, симметричная точке Р относительно прямой d, лежит на прямой CD (рис. 14). Для доказательства теоремы воспользуемся признаком параллельности прямых . Прямые АВ и CD не пересекаются, поэтому достаточно доказать, что любой внутренний луч угла PQD пересекает луч РВ.
Пусть h — произвольный внутренний луч угла PQD, a h’ — луч, симметричный лучу h относительно прямой d. Так как угол PQD симметричен углу QPB и h — внутренний луч угла PQD, то h' — внутренний луч угла QPB. Но АВ || CD, поэтому луч h’ пересекает луч QD. Отсюда следует, что и луч h пересекает луч РВ. Чтд.
Справедлива следующая теорема.
Теорема 2. Если АВ || EF, EF || CD и прямые АВ и CD не совпадают, то АВ || CD.
2. Условимся называть две (ненаправленные) прямые а и b параллельными, если на этих прямых можно выбрать направления так, чтобы они были параллельны.
Две прямые на плоскости Лобачевского называются расходящимися (или сверхпараллельными), если они не пересекаются и не параллельны. Легко видеть, что через каждую точку М, не лежащую
Рис. 15 рис.16
на прямой а, проходит бесконечное множество прямых, каждая из которых расходится с прямой а. В самом деле, пусть прямые CD и EF параллельны прямой а в разных направлениях (см. рис. 7). Тогда любая прямая, проходящая через точку М внутри вертикальных углов CMF и EMD, расходится с прямой а.
Таким образом, на плоскости Лобачевского в отличие от плоскости Евклида имеются три случая взаимного расположения двух прямых: прямые пересекаются, параллельны или расходятся.
Теорема 3. Две прямые, имеющие общий перпендикуляр, расходятся.
□ Пусть АВ и CD — данные прямые, a PQ — их общий перпендикуляр (рис. 15). По лемме 1 (Если при пересечении двух прямых секущей накрест лежащие углы (или соответственные углы) равны, то прямые не пересекаются) прямые АВ и CD не пересекаются. Они не могут быть параллельными, так как если допустить, что они параллельны, то прямые углы APQ и BPQ должны быть углами параллельности в точке Р относительно прямой CD. Но угол параллельности всегда острый, поэтому наше допущение неверно; значит, АВ и CD — расходящиеся прямые. ■
Следствие. На плоскости Лобачевского не существует общего перпендикуляра двух параллельных прямых.
3. В заключение докажем, что на плоскости Лобачевского расстояние от переменной точки одной из двух параллельных или расходящихся прямых до другой прямой есть переменная величина. Для этого предварительно докажем следующую лемму.
Лемма 2. Пусть лучи PP’ и QQ' лежат в одной полуплоскости с границей PQ, PQQ' прямой, a QPP' прямой или тупой
Достарыңызбен бөлісу: |