Реферат по математическим основам теории систем на тему Линейное программирование Группа: пс-263



бет1/6
Дата03.12.2022
өлшемі5.42 Mb.
#466374
түріРеферат
  1   2   3   4   5   6
Линейное программирование


Министерство образования РФ
Южно-Уральский государственный университет

Кафедра Автоматики и управления


Реферат
по математическим основам теории систем
на тему
Линейное программирование
Выполнил:
Группа: ПС-263
Проверил: Разнополов О. А.
Челябинск
2003

1. Введение


При постановке задачи организационного управления, прежде всего, важно



  1. Определить цель, преследуемую субъектом управления.

  2. Установить, значениями каких переменных исследуемой системы можно варьировать.

Под целью будем понимать тот конечный результат, который необходимо получить путём выбора и реализации тех или иных управляющих воздействий на исследуемую систему. В производственно-коммерческой сфере цель заключается в том, чтобы либо максимизировать прибыль, либо минимизировать расходы.
Когда цель определена, оптимальным считается такой способ действий, который в наибольшей степени способствует достижению этой цели. Однако «качество» реализации процедуры выбора зависит от того, насколько полно известны допустимые альтернативы управляющих воздействий. Требуется выявить полное множество так называемых управляемых переменных. Важным моментом при принятии управляющих решений является идентификация неуправляемых переменных, то есть субъекта управления. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые определяют область допустимых значений управляемых переменных. Как цель, так и ограничения должны быть представлены в виде функций от управляемых переменных. Анализ модели должен привести к определению наилучшего управляющего воздействия на объект управления при выполнении всех установленных ограничений. При упрощённом описании реальных систем, на основе которого будет строиться та или иная модель, прежде всего следует идентифицировать доминирующие переменные, параметры и ограничения. Модель, будучи дальнейшим упрощением образа системы-оригинала, представляет собой наиболее существенные для описания системы соотношения в виде целевой функции и совокупности ограничений.
Наиболее важным типом моделей являются математические модели. В основе их построения лежит допущение о том, что все релевантные переменные, параметры и ограничения, а также целевая фукция количественно измеримы. Поэтому если

представляет собой управляемых переменных и условия функционирования исследуемой системы хаарктеризуются ограничениями, то математическая модель может быть записана в следующем виде:
Найти оптимум

(целевая функция) при ограничениях

Ограничения – условия неотрицательности. Нахождение оптимума осуществляется для определения наилучшего значения целевой функции (максимума прибыли или минимума затрат, например). Полученное с помощью некоторой модели конкретное оптимальное решение является наилучшим только в рамках использования только этой модели. Не следует считать, что найденный оптимум – это действительно самое лучшее решение анализируемой задачи. Оно является наилучшим из всех возможных тогда, когда выбранный критерий оптимизации можно считать полностью адекватным конечным целям организации, в которой возникла исследуемая проблемная ситуация.




Достарыңызбен бөлісу:
  1   2   3   4   5   6




©dereksiz.org 2025
әкімшілігінің қараңыз

    Басты бет