Рис. 1. Отклоняющие устройства двигателей: а и б — поворотные сопла; в — решётки, г — плоские сопла с подвижными стенками.
Рис. 2. Отклоняющие устройства самолётов: а — обдув закрылков снизу; б — обдув крыла сверху; 1 — двигатель; 2 — закрылок.
Управление воздушным движением (УВД) в нашей стране — организация, планирование, координирование движения воздушных судов, выполняющих полёты или движущихся по аэродрому в связи с совершением взлётно-посадочных операций. Конечная цель УВД — обеспечение безопасности, регулярности и эффективности полётов. Согласно Воздушному кодексу СССР УВД было возложено на органы Единой системы управления воздушным движением (ЕС УВД) и ведомственные органы управления в пределах установленных для них районов и зон. В действующей системе управления ведущая роль принадлежит ЕС УВД. Она создана в начале 70 х гг. К этому времени плотность и интенсивность воздушного движения в стране достигли такого уровня, что управление полётами гражданских и военных воздушных судов, которые выполняются практически в одном и том же воздушном пространстве, их согласование и координация с пунктов управления, принадлежащих различным ведомствам, стали затруднительными. Интересы безопасности требовали объединения гражданских и военных органов УВД, что и было осуществлено в рамках ЕС УВД.
На органы ЕС УВД была возложена организация использования воздушного пространства для полётов гражданских и военных воздушных судов и других видов деятельности, связанной с использованием воздушного пространства, включая определение в нём воздушных трасс, местных воздушных линий (МВЛ), районов аэродромов и др. элементов структуры воздушного пространства для обеспечения единой технической политики УВД, внедрение автоматизированных систем и др. Оперативные органы — центры ЕС УВД (главный, зональные, районные), состоящие из гражданских и военных секторов, осуществляют планирование, координирование воздушного движения, а районные, кроме того, — непосредственное управление воздушным движением. При этом гражданские сектора управляют полётами всех воздушных судов по воздушным трассам страны и МВЛ первой категории, а военные сектора — полётами воздушных судов по маршрутам, проложенным вне воздушных трасс и МВЛ.
Ведомственные гражданские и военные органы УВД (диспетчерские и командные пункты различного назначения), не входящие в ЕС УВД, действуют в тесном взаимодействии с оперативными органами ЕС УВД. Они управляют воздушным движением в районах аэродромов (аэроузлов), включая подход и посадку воздушных судов, их взлёт и выход из районов аэродромов (аэроузлов) на воздушные трассы страны, МВЛ или на другие маршруты. К компетенции ведомственных органов УВД относится также УВД при полётах на МВЛ второй категории, в районах авиационных работ и др.
Процесс оперативного управления включает планирование, координирование и непосредственное УВД. Планирование воздушного движения производится с учётом пропускной способности воздушного пространства, аэродромов и возможностей органов УВД в обеспечении управления. Различают планирование предварительное — за несколько суток до дня полёта для составления расписаний полётов, потоков движения воздушных судов, графиков использования аэродромов и т. д., суточное — накануне дня полётов и текущее — в процессе выполнения суточного плана полётов для корректировки условий полётов отдельных воздушных судов. Координирование заключается в согласовании полётов воздушных судов с другими видами деятельности в воздушном пространстве, одновременных полётов воздушных судов различных ведомств в соответствующих районах и зонах, включая перераспределение потоков движения воздушных судов по воздушным трассам страны, МВЛ и др.
Непосредственное УВД начинается с момента пуска двигателей воздушного судна (начала руления, буксировки) и продолжается до их выключения после заруливания на стоянку. Непосредственное УВД включает: 1) информацию экипажей воздушных судов о метеоусловиях и воздушной обстановке в районе полёта, о состоянии аэродромов, работе средств связи и радиотехническом обеспечении полётов и посадки, передачу других данных, необходимых для безопасного выполнения полёта; 2) предотвращение опасных сближений и столкновений воздушных судов в полёте и с препятствиями на аэродроме посредством их эшелонирования (рассредоточения) в движении на безопасные интервалы, установленные правилами УВД; 3) принятие своевременных мер по оказанию помощи экипажу воздушного судна, терпящему бедствие или встретившемуся в полёте с особыми случаями, угрожающими его безопасности; 4) извещение органов, осуществляющих поисково-спасательные и аварийно-спасательные работы, о воздушных судах, терпящих или потерпевших бедствие.
Непосредственное УВД в зависимости от технической оснащённости осуществляется: при наличии непрерывного радиолокационного контроля за полётами — с соблюдением принципа «вижу, слышу — управляю», а при отсутствии такого контроля — с соблюдением принципа «слышу — управляю». Без радиосвязи полёты не разрешаются. Поддержание воздушными судами постоянной радиосвязи с органами УВД является обязательным. При нарушении связи командир воздушного судна и орган УВД обязаны принять неотложные меры к её восстановлению. При невозможности восстановления связи они должны действовать в соответствии с установленными для таких случаев правилами, соблюдение которых обеспечивает предупреждение столкновения данного воздушного судна с другими воздушными судами и его посадку на основном или запасном аэродроме. Непосредственное УВД всеми воздушными судами в определённом районе, зоне осуществляет только один орган УВД. Передача непосредственного УВД от одного органа УВД другому производится на установленных рубежах, определяемых, как правило, на границах их соответствующих районов и зон.
Обеспечение порядка и безопасности в воздушном движении достигается посредством передачи командирам воздушных судов диспетчерских разрешений и указаний, касающихся курса, высоты (эшелона) и скорости полёта. Они обязательны для исполнения. В случае явной угрозы безопасности полёта, а также в целях спасения жизни людей, находящихся на борту воздушного судна, его командир может принимать решения, касающиеся продолжения полёта, с отступлением от диспетчерских указаний и разрешений. О предпринятых действиях он обязан немедленно сообщить органу УВД, под непосредственным управлением которого находится воздушное судно.
УВД как форма обеспечения полётов воздушных судов по своим подходам к решению возлагаемых на него задач существенно отличается от обслуживания воздушного движения (ОВД), рекомендованного для этих целей Международной организацией гражданской авиации (ИКАО). ОВД осуществляется в виде или полётно-информационного, или консультативного, или диспетчерского обслуживания, каждое из которых может быть самостоятельным видом обслуживания. УВД, осуществляемое в нашей стране, является общим для всех воздушных судов видом обслуживания воздушного движения. Оно обеспечивается различными органами управления во всём воздушном пространстве. При этом в процессе управления решаются все задачи, которые определены для ОВД.
УВД иностранных воздушных судов в воздушном пространстве страны по воздушным трассам и в районах аэродромов, выделенных для международных полётов, производится в целом по тем же правилам, что и УВД национальных воздушных судов. Некоторые особенности, связанные, в частности, с принятием решений на вылет, посадку и пр., отражают желание обеспечить максимально возможное единообразие действующих для иностранных воздушных судов правил УВД со стандартами и процедурами, рекомендованными ИКАО. Правила УВД для иностранных воздушных судов в воздушном пространстве страны опубликованы в Сборнике аэронавигационной информации.
В районах воздушного пространства над открытым морем, в которых наша страна на основе международных соглашений обеспечивает обслуживание воздушного движения, УВД осуществляется с некоторыми особенностями. УВД российских воздушных судов производится в том же объёме, что и при полётах в воздушном пространстве страны. УВД иностранных воздушных судов осуществляется в порядке, рекомендованном ИКАО. На международных воздушных трассах им предоставляется полётно-информационное и диспетчерское обслуживание, а также аварийное оповещение, в остальном воздушном пространстве — полётно-информационное обслуживание и аварийное оповещение.
УВД в воздушном пространстве страны отечественных воздушных судов производится на русском языке, а иностранных воздушных судов — на английском или русском языках, если об этом имеется соответствующее соглашение с государством регистрации воздушного судна.
Лит.: Бордунов В. Д., Котов А. И., Малеев Ю. Н., Правовое регулирование международных полетов гражданских воздушных судов, М., 1988; Управление воздушным движением, М., 1988; Автоматизация управления безопасностью полетов, М., 1989.
А. И. Котов.
Управление летательным аппаратом — формирование отклонений органов управления (ОУ) для требуемого изменения положения ЛА в пространстве или поддержания заданного его положения при действии различных возмущений. Управление траекторией движения центра масс ЛА осуществляется изменением действующих на него сил (при полёте в атмосфере — это аэродинамические силы и тяга двигателя). Управление движением относительно центра масс (управление угловым положением) осуществляется изменением вектора момента относительно центра масс (см. Аэродинамические силы и моменты). На большинстве самолётов для создания управляющих сил и моментов применяются аэродинамические ОУ, а на вертолётах — несущие и рулевые винты (см. Вертолёт). На некоторых типах самолётов и вертолётов используется газодинамическое управление (см. также Управление вектором тяги). Иногда (например, на дельтапланах) У. л. а. реализуется перемещением центра тяжести.
У. л. а. может осуществляться лётчиком или автоматически. В зависимости от типа управления ЛА можно разделить на пилотируемые, которыми управляет лётчик либо непосредственно, либо через соответствующие системы автоматического управления (САУ), и беспилотные, управляемые полностью либо САУ, расположенными на борту ЛА, либо САУ, использующими внешние команды (например, с самолёта сопровождения), задающие необходимую траекторию.
Пилотирование лётчиком осуществляется на основе исходной информации, которая складывается из визуального наблюдения внешней обстановки, наблюдения за приборами, ощущения лётчиком условий полёта по изменению перегрузки, усилий на рычагах управления (РУ) и их перемещений. На основе требований к режиму полёта и этой информации лётчиком формируется задача управления. Отклонение ОУ, а также необходимое изменение тяги двигателя или включение тормозных устройств лётчик производит в зависимости от формируемой задачи, опираясь на свой опыт. При ручном или (как его ещё называют) штурвальном управлении отклонение лётчиком ОУ может выполняться непосредственно (так называемое обратимое ручное управление), когда лётчик, прикладывая усилия к РУ, уравновешивает полностью или частично аэродинамический шарнирный момент отклоняемого ОУ. В этом случае перемещение РУ требует от лётчика непрерывной затраты энергии. Другой вид ручного управления — необратимое. Он связан с использованием для отклонения ОУ каких-либо вспомогательных устройств и источников энергии, например гидравлическая или электрическая системы (см. Бустерное управление). Гидравлический рулевой привод, или бустер, в системе необратимого управления уравновешивает полностью шарнирный момент ОУ, а лётчик перемещает только золотник бустера, для чего требуется небольшое усилие (порядка 10—15 Н). Поскольку рулевой привод представляет собой систему с жёсткой обратной связью, то перемещение лётчиком РУ однозначно (и, как правило, линейно) связано с перемещением выходного штока бустера и, следовательно, с отклонением ОУ. Такое устройство позволяет управлять ЛА на больших скоростях и при его больших размерах. Усилия, создаваемые рулевыми приводами скоростных самолётов, составляют несколько десятков кН. Однако для появления у лётчика необходимых ощущений изменения режима полёта (скорости, перегрузки, угловых скоростей и др.) на РУ должны искусственно имитироваться соответствующие изменения усилий, строго регламентированные в соответствии с опытом лётных испытаний. Применяемые для этого имитаторы усилий, которые обычно называются загрузочными устройствами, имеют различные принципы действия. Они могут быть пневматическими, гидравлическими и механическими. Последний тип получил наибольшее распространение (в виде регулируемой пружины). Загрузочные устройства должны обеспечивать регулирование усилий в зависимости от параметров полёта (см. Рычагов управления загрузка).
Для получения удовлетворительных пилотажных характеристик на самолёте с необратимым бустерным управлением приходится также вводить регулирование кинематической связи (изменение передаточного отношения) от ру к ОУ. Это связано с необходимостью реализовать также определённый, установленный опытом лётных испытаний характер перемещения РУ в зависимости от изменения основных параметров полёта. Например, для управления продольным движением перемещение РУ должно быть связано также с изменением скорости полёта (или Маха числа), высоты полёта, перегрузкой. Для улучшения пилотажных характеристик самолёта в его систему штурвального (или ручного) управления включаются системы улучшения устойчивости и управляемости (СУУ), действующие, как правило, независимо от лётчика на ОУ в процессе возмущённого движения и отклоняющие их функции угловой скорости (для улучшения демпфирования свободных колебаний), угла атаки или перегрузки для увеличения устойчивости или сокращения времени переходных процессов при управлении. Сигналы СУУ формируются её вычислителем: входными сигналами в нём являются параметры движения ЛА (угловая скорость, компоненты перегрузки, угол атаки или угол скольжения, скорость полёта и т. п.). Выходной сигнал СУУ формируется вычислителем по заданным алгоритмам. Выбор алгоритмов производится на основе анализа динамики движения ЛА в различных условиях и связан с аэродинамической и инерционной характеристиками ЛА. Вычислитель может быть аналоговым или цифровым. Связи РУ лётчика с исполнительными приводами ОУ (бустерами или др.) могут осуществляться механической или дистанционной электрической системой, гидравлическими каналами и, наконец, при помощи световодов (см. Гидравлическое оборудование, Проводка управления, Электродистанционная система управления). При дистанционной системе связи сигналы (электрические или оптические), передаваемые от лётчика, а также от СУУ, могут иметь аналоговую или цифровую форму. Дистанционные системы управления в значительной степени упрощают включение любых дополнительных автоматических устройств, в частности облегчают решение задачи управления при посадке и взлёте, а также при выполнении боевых операций.
На современных самолётах кроме штурвального (ручного) управления от лётчика используется обычно дополнительные САУ, как правило, на ограниченных режимах полёта. Наиболее широко САУ (автопилот) применяется для стабилизации длительного установившегося крейсерского режима полёта как по угловым параметрам, так и для стабилизации скорости и высоты полёта. САУ также широко используется для автоматизации посадки (по I, II и III категориям), для некоторых простых манёвров, для управления маневрированием в боевых операциях. Включение САУ в контур управления особенно удобно при дистанционной системе управления, хотя и требует принятия дополнительных мер для согласования с ручным управлением (см. Совмещённое управление).
Полностью автоматическое управление беспилотных ЛА возможно при наличии соответствующей требуемым условиям точности пилотирования информации о текущем положении ЛА в пространстве (включая и угловое), а также информации о заданном движении ЛА, которая в зависимости от решаемой задачи и назначения ЛА может поступать от датчиков, расположенных на борту, и от внешних датчиков, измеряющих параметры движения ЛА. Траекторное управление беспилотных ЛА различного назначения может быть командным (по командам, поступающим извне), программным (траектория сформирована и задается на борту в виде временных зависимостей), терминальным, при котором управление осуществляется для достижения конечного результата (при этом можно выполнять ряд ограничений). Кроме траекторного управления, как правило, осуществляются угловая стабилизация и управление угловым положением ЛА. Важнейшими задачами при создании такого управления беспилотными ЛА являются; обеспечение устойчивости движения на всех режимах полета с учётом возможных возмущений, отклонений исходных данных; достижение точности реализации целевого назначения ЛА; обеспечение надёжности управления при заданных отказах в системе управления.
Г. С. Бюшгенс.
Управление пограничным слоем (УПС) — воздействие на пограничный слой (ПС) с целью ослабления или предотвращения срыва потока на обтекаемой поверхности, охранения ламинарного течения в ПС и уменьшения теплопередачи при больших сверхзвуковых скоростях потока.
УПС осуществляется изменением формы обтекаемой поверхности, уменьшением разности между скоростями внешнего потока и обтекаемой поверхности (профили с подвижными поверхностями), использованием энергии основного потока для увеличения энергии частиц воздуха в ПС (щелевая механизация крыла, вихрей генераторы), сообщением ускорения частицам ПС (выдув сжатого воздуха вдоль обтекаемой поверхности, так называемый сдув ПС), удалением из пристенного участка ПС заторможенных частиц воздуха (см. Отсос пограничного слоя) и изменением состояния ПС (вдув в пограничный слой газа с другими физическими свойствами, охлаждение поверхности и др.).
Наиболее эффективными являются способы УПС, основанные на использовании энергии, отбираемой от специальных источников мощности (см. Энергетическая механизация крыла). К их числу относятся отсос ПС и его сдув. Применение этих способов позволяет переместить точку отрыва ПС вниз по течению за счёт уменьшения толщины ПС и увеличения его энергии.
В авиации наибольшее практическое применение получила система сдува ПС посредством выдува воздуха, отбираемого от компрессора ВРД, на верхнюю поверхность крыла и отклонённых закрылков (использована, например, на истребителях МиГ 21, Макдоннелл-Дуглас F 4 «Фантом» и др.). Параметром, характеризующим интенсивность выдува и его воздействие на аэродинамические характеристики самолёта, является коэффициент импульса струи выдуваемого воздуха:
cp = {{}},
где т — массовый секундный расход воздуха, V — скорость струи на срезе щелевого сопла, q{{∞}} — скоростной напор набегающего потока, S0 — часть площади крыла, соответствующая размаху щелевого сопла. Безотрывное обтекание крыла с отклонёнными на углы {{δ}}3 = 60—80{{°}} закрылками обычно достигается при выдуве струй с коэффициентом импульса с{{μ}} = 0,06—0,12. При этом на крыльях с удлинением {{λ}} = 7—8 эффективность нещелевых закрылков может быть увеличена в 2—3 раза и получен коэффициент максимальной подъёмной силы сymax = 5—6. Применение систем УПС позволяет уменьшить взлётно-посадочные скорости самолёта и потребную длину ВПП на 25—50%.
УПС используется также для уменьшения аэродинамического сопротивления элементов ЛА за счёт обеспечения их безотрывного обтекания или ламинаризации пограничного слоя. Для уменьшения теплопередачи используется вдув в пограничный слой газа, более лёгкого, чем во внешнем течении.
Лит.: Ружицкий Е. И., Безаэродромная авиация, М., 1959; Мартынов А. К., Прикладная аэродинамика, М., 1972; Шлихтинг Г., Теория пограничного слоя, пер. с нем., М., 1974; Чжен П., Управление отрывом потока, пер. с англ., М., 1979; Boundar layer and flow control, ed. by G. V. Lachmann, v. 1—2, N. Y., 1961.
А. В. Петров.
Управляемость летательного аппарата — способность ЛА изменять режим полёта при отклонении органов или рычагов управления. При практическом использовании понятие У. характеризуется рядом показателей, выполнением определённых требований, необходимых с точки зрения осуществимости полёта и его безопасности.
Для ЛА с чисто механической системой управления У. количественно оценивается по приращениям основных параметров режимов полёта на значения отклонений аэродинамических органов управления.
К параметрам режимов полёта принято относить нормальную перегрузку пy, поперечную перегрузку пz, и скорость крена {{ω}}x. В качестве органов управления рассматриваются руль высоты или его эквиваленты (стабилизатор, элевоны и т. п.), элероны или их эквиваленты (интерцепторы, флапероны, элевоны и т. п.) и руль направления. У. ЛА в этом случае характеризуют производными {{∂}}ny/{{∂ δ}}в, {{∂}}nz/{{∂ δ}}н, {{∂ ω}}x/{{∂ δ}}э, (или максимальными значениями скорости крена ωxmax при максимальном угле отклонения {{δ}}эmax элеронов). Здесь {{δ}}в, {{δ}}н и {{δ}}э — углы отклонения соответственно рулей высоты и направления и элеронов. Могут использоваться в качестве характеристик У. и интегральные показатели, например время достижения заданного угла крена. Этот показатель учитывает запаздывание в развитии скорости крена при отклонении элеронов.
Для пилотируемых ЛА, имеющих в системе управления электрогидравлические приводы и контуры автоматики, У. оценивается изменением параметров режима полёта при перемещениях Хв, Хн и Хэ соответственно рычагов управления рулями высоты и направления в элеронами: ∂ny/∂Xв, ∂nz/∂Xн, и ∂{{ω}}x/∂Xэ.
Во всех случаях, при чисто механической проводке управления или при наличии приводов и контуров автоматики, важнейшими характеристиками У. пилотируемых ЛА являются изменение параметров режимов полёта на изменение усилий Р, прикладываемых к рычагам управления: ∂ny/∂Pв, ∂nz/∂Pн, ∂{{ω}}x/∂Pэ (или {{ω}}xmax при Pэmax).
Характеристики У. ЛА наряду с характеристиками динамической устойчивости играют первостепенную роль в оценке ЛА лётчиком, в возможности выполнения полётного задания в целом, поддержания того или иного режима полёта и выполнения необходимых манёвров, непосредственно сказываются на степени напряжённости лётчика и его утомляемости, в значительной степени влияют на безопасность полёта.
Излишняя чувствительность самолёта по перегрузкам и угловой скорости {{ω}}x к отклонениям рычагов управления и прикладываемым к ним усилиям недопустима в силу невозможности человека точно дозировать малые перемещения и усилия рук и ног. Высокая чувствительность самолёта в управлении в сочетании с его определёнными динамическими свойствами может служить причиной неустойчивости замкнутой системы самолёт — лётчик (раскачка самолёта лётчиком). С другой стороны, низкая чувствительность самолёта в управлении также неприемлема для лётчиков, требуя от них больших перемещений рычагов управления или приложения больших усилий в процессе полёта (см. Чувствительность управления).
Г. И. Загайнов.
Управляемый стабилизатор — см. в ст. Стабилизатор.
Упругие колебания летательных аппаратов — совокупность различной природы вибраций всего ЛА или его частей как упругой деформируемой системы (конструкции), которые могут возникнуть в определённых условиях при эксплуатации ЛА. У. к. возникают и поддерживаются внешним по отношению к упругой системе источником энергии, связанным с самой системой. В зависимости от характера связей выделяют следующие основные виды У. к.: вынужденные колебания, автоколебания, параметрические колебания.
Вынужденные колебания возникают в системе от источника энергии, подающего периодические воздействия, по величине и характеру не зависящие от самой системы, то есть при односторонней связи. К такого рода У. к. можно отнести вибрации ЛА, возникающие при его полёте в турбулентной атмосфере, при его пробеге и разбеге, а также бафтинг оперения, акустические колебания и др. Частный случай вынужденных колебаний — свободные колебания, происходящие при одноразовом действии на систему источника энергии, например при попадании ЛА в неповторяющийся вертикальный порыв ветра.
Автоколебания имеют место при создании упругой системой периодических воздействий, поступлением которых из источника энергии система управляет сама. При этом тем или иным способом обеспечивается обратная связь между системой и источником У. к. На ЛА могут возникнуть различные виды автоколебаний — флаттер, шимми, вибрации при работе САУ и т. д. Как правило, автоколебания — наиболее опасный вид У. к., способный привести к спонтанному разрушению ЛА.
Параметрические колебания возникают при периодическом изменении источником энергии параметров упругой системы. Чаще всего этим колебаниям подвержены вертолёты.
Возникновение У. к. на самолёте нежелательно, а при определённых видах колебаний недопустимо. В зависимости от вида У. к. существуют различные способы их предупреждения. Уменьшения вынужденных колебаний до такой степени, при которой они не представляли бы непосредственной опасности для прочности ЛА и не препятствовали бы нормальному, в течение заданного времени, его функционированию, достигают различными способами, зависящими от характера и природы внешних воздействий. Для предотвращения автоколебаний стремятся создать такую конструкцию ЛА, в которой были бы «оборваны» или резко ослаблены обратные связи.
Вероятный вид У. к. определяют по их осциллограммам, на которых виден характер нарастания вынужденных резонансных колебаний (огибающие — прямые, рис. 1, а) и автоколебаний (огибающие — экспоненты, рис. 1, б). Каждый вид У. к. классифицируют по основному типу деформаций, которые происходят на всём ЛА или на его отдельных узлах (например, вынужденные поперечные колебания тяги управления, изгибно-крутильный флаттер крыла).
Для изучения У. к. и определения способов их устранения применяют экспериментальный и теоретический методы. Эксперименты проводят на физических моделях с учётом законов механического подобия, либо исследуют реальный ЛА в реальных условиях. Теоретические методы основаны на создании математических моделей самой упругой системы (обычно модель с бесконечным числом степеней свободы) и способа передачи воздействия внешней среды на модель.
Математические модели описываются матричным уравнением вида:
{{}}, (1)
где L — дифференциальный оператор, моделирующий упругую систему, её массовые и инерционные характеристики и связи между ними, W — вектор деформаций, Р — координата точки упругой системы, t — время, F — оператор, моделирующий механизм подвода энергии. Для вынужденных колебаний F зависит только от t. При малых колебаниях операторы L и F — линейны относительно W и его производных. При исследовании У. к. различных ЛА используются различные математические модели. Например, для самолёта с крылом большого удлинения математической моделью служит система скрещенных балок, каждая из которых моделирует крыло, фюзеляж, оперение и т. д. и является носителем упругих и массовых характеристик соответствующих частей самолёта; крыло малого удлинения моделируют пластиной и т. д. Для полного описания движения упругой системы к уравнению (1) добавляют дополнительные условия: краевые, характеризующие условия её закрепления, и начальные, описывающие её состояние в момент начала движения.
При использовании в качестве модели крыла прямой балки вектор деформации W имеет вид:
{{}},
где f(х) — прогиб сечения х балки (Р = х), {{φ}} (x) — угол её закручивания. Оператор L в случае малых колебаний имеет вид:
L = [W (x, t)] = {{}}
где ЕJ и GJр — соответственно жёсткости балки на изгиб и кручение; т, Jт — масса и массовый момент инерции единицы длины балки, {{σ}} — расстояние от центра масс сечения балки до её основания. Для вынужденных колебаний оператор
{{}},
где fi(t) — заданные функции времени.
Для консольно защемлённой в стенку балки в месте её заделки (при x = 0) граничные условия имеют вид:
{{}},
на её свободном конце:
{{}}
Начальные условия обычно задаются при t = 0:
{{}} {{}},
{{}}, {{}},
где {{ψ}}i(x) — заданные функции. При {{σ ≠}}0 балка совершает связанные изгибно-крутильные колебания. Если {{σ}} = 0, то оператор L = [W(х, t)] разделяется (балка совершает либо изгибные, либо крутильные колебания).
Если F(t) = 0, то вследствие начальной деформации наступает автономное движение системы, называемое свободными колебаниями. Тогда решение уравнения (1) имеет вид:
Достарыңызбен бөлісу: |