Нормальная нейропсихология


Глава 2. Строение головного мозга



бет5/24
Дата13.06.2016
өлшемі3.21 Mb.
#132717
1   2   3   4   5   6   7   8   9   ...   24
Глава 2. Строение головного мозга
2.1. Общие представления о головном мозг

Для того чтобы рассмотреть современные представления не только о психологической структуре ВПФ человека, но и их моз­говой организации, целесообразно обратиться к современным представлениям о головном мозге в целом.

Головной мозг человека — это верхний отдел центральной нервной системы (ЦНС). Между ним и нижним отделом ЦНС (спинным мозгом) не существует границы, которая была бы выражена анатомически. Окончанием спинного мозга и началом головного условно служит верхний шейный позвонок. Отсюда понятно, какую важную роль для работы всей нервной системы имеет состояние каждой из частей ЦНС. В частности, тот факт, что ее «нервная ось» (головной и спинной мозг) едина, обуслов­ливает зависимость работы головного мозга от состояния спин­ного, особенно в детском возрасте. Это, в свою очередь, свиде­тельствует о том, что воспитательные меры по укреплению по­звоночного столба в самый ранний период жизни, а также по выработке правильной осанки в последующее время являются необходимыми.

Различные части мозга не одинаковы по иерархии. В нейро­психологии принято их анатомическое деление на блоки, учение b которых разработано А.Р. Лурией. Каждый из них составлен различными мозговыми структурами, о которых речь пойдет Далее.

Основную часть, самую большую по занимаемой площади, Составляет кора мозга (рис. 1, 2, цв. вкл.). Она имеет: а) поверх­ностные складки, которые обозначаются как борозды; б) глубо­кие складки, обозначаемые как щели; в) выпуклые гребни на по­верхности мозга — извилины.

Щели разделяют мозг на доли (рис. 2, цв. вкл.). Извилины де­лят доли на еще более дифференцированные в функциональном отношении участки.

Основными единицами нервной системы являются нервные клетки — нейроны (рис. 9 см. цв. вкл.). Как и другие клетки наше­го организма, нейрон содержит тело с расположенным в центре ядром и отростки, которые называются невритами. Одни из не­вритов передают нервные импульсы другим клеткам, другие — принимают их. Передающие отростки — длинные. Это аксоны Принимающие — короткие. Этодендриты. Каждая клетка имеет один аксон и много дендритов.

Нейронами составлено серое вещество мозга. Они чрезвы­чайно разнообразны по форме и функциональному назначению. Их отростки, аксоны, передающие информацию — это белое вещество мозга. Аксоны миелинизированы, т.е. покрыты жировым миелином, который повышает скорость передачи нервных им­пульсов. Аксоны надежно защищены глиальными клетками митохондриями, представляющими собой опорные клетки, обра­зующие белую жировую (миелиновую) прослойку — глию. Глия не является сплошной. На ней есть перехваты, называемые пе­рехватами Ранвье. Они облегчают прохождение нервных им­пульсов от клетки к клетке. Эту же роль играют пузырьки (нейромидиаторы), расположенные в окончаниях аксонов. Глиальные клетки не проводят нервные импульсы. Одни из них питают нейроны, другие защищают от микроорганизмов, третьи регули­руют поток спинномозговой жидкости.

В теле клетки имеются и другие структуры, обеспечивающие жизнедеятельность. Наиболее важными из них являются ри­босомы (тельца Ниссля). Рибосомы имеют форму гранул. Они синтезируют белки, без которых клетка не может выжить.

Несмотря на сложность клеточного устройства мозга, законы его функционирования во многом изучены и представляют чрез­вычайный интерес.

Испанский ученый Сантьяго Рамон-и-Кахал дал удивитель­но поэтичное описание мозга с точки зрения составляющих его нервных клеток. «Сад неврологии, — писал он, — представляет исследователю захватывающий, ни с чем не сравнимый спек­такль. В нем все мои эстетические чувства находили полное удовлетворение. Как энтомолог, преследующий ярко окрашен­ных бабочек, я охотился в красочном саду серого вещества с их тонкими, элегантными формами, таинственными бабочками ду­ши, биение крыльев которых, быть может, когда-то — кто знает? — прояснит тайну духовной жизни».

Мозг новорожденного ребенка насчитывает 12 миллиардов нейронов и 50 миллиардов глиальных клеток, взрослого челове­ка — 150 миллиардов нейронов (по И.А. Скворцову). Если их вытянуть в цепочку, вернее, в мост, то по нему можно пропуте­шествовать на Луну и обратно.

Размер каждой клетки чрезвычайно мал, но диапазон их раз­личий по этому признаку достаточно велик: от 5 до 150 микрон. В течение жизни человек теряет определенное число клеток, но в сравнении с общим их числом потери ничтожны (приблизи­тельно 4 миллиарда нейронов). Если совсем недавно считалось, что нервные клетки не вос­станавливаются, то в настоящее время эта истина перестала быть абсолютной. Нейробиолог С. Вайс из Канады в 1998 году выска­зал мнение, основанное на проведенных им исследованиях, что нейроны могут восстанавливаться. Правда, механизм такого вос­становления имеет место не у всех людей и не при всех условиях. Причины этого продолжают выясняться, но сам факт того, что это возможно, относится к числу на редкость сенсационных.

До того, как были открыты тайны созревания и функциони­рования нервных клеток, считалось, что нервы — это пустые (полые) трубки. По ним движутся потоки газов или жидкостей. Исаак Ньютон впервые отошел от этих представлений, заявив, что передачу нервного импульса осуществляет вибрирующая эфирная среда. Однако еще ближе к истинному положению вещей подошел итальянский исследователь Луиджи Гальвани. В научном мире, а также вне его, хорошо известен казус, ко­торый помог ему открыть биоэлектрическую природу функци­онирования нервной системы.

Имеется в виду оторвавшаяся лапка только что подвергшейся препарированию лягушки, которая случайно попала под дейст­вие электрического тока и стала сокращаться (дергаться). Так были заложены основы важнейшей на сегодняшний день науки о мозге — нейрофизиологии, изучающей электрические биопо­тенциалы мозга.

Широко известно, что нервные клетки объединяются в сети, которые называют также нервными цепями. У каждого нейрона приблизительно 7 тыс. таких цепей. По цепям от клетки к клет­ке передается информация. Местом обмена являются места со­единения аксона (длинного отростка клетки) одной клетки и дендрита (короткого отростка) другой клетки. Нейрон передает возбуждение другому нейрону через одну или множество точек контакта (синапсы) — (рис. 10, цв. вкл.). Когда импульс доходит до синаптического узла, выделяется особое химическое вещество — нейромедиатор. Оно заполняет синаптическую щель и распространяет нервный импульс на значительное рас­стояние. Чем больше синапсов, тем вместительнее в смысле па­мяти мозговой «компьютер». Каждая нервная клетка получает импульсы от многих сотен, и даже тысяч нейронов.

Согласно представлениям нейрофизиологии, скорость тече­ния электрического тока по проводам нервов равна скорости винтового самолета — 60-100 м/с. Обычно расстояние от синап­са до синапса составляет 1,5-2 м. Нервный импульс преодолева­ет его за 1/100 долю секунды. Сознание не успевает зафиксировать это время. Скорость мысли, таким образом, выше скорости све­та. Это находит отражение во многих фольклорных источниках. Вспомним, например, принцессу, которая, испытывая доброго молодца, загадывает ему загадки, и в частности, эту: «Что на све­те быстрее всего?» (имея в виду в качестве ответа — мысль).

Нервные клетки не делятся, как это делают другие клетки ор­ганизма, поэтому при повреждении они чаще всего погибают.

Несмотря на то, что нервный импульс имеет электрическую природу, связь между нейронами обеспечивается химическими процессами. Для этого в мозге имеются биохимические субстан­ции — нейротрансмиттеры и нейромодуляторы. В тот момент, когда электрический сигнал доходит до синапса, высвобождают­ся соответствующие трансмиттеры. Они, как транспортное сред­ство, доставляют сигнал к другому нейрону. Затем эти нейро­трансмиттеры распадаются. Однако на этом процесс передачи нервных импульсов не заканчивается, т.к. нервные клетки, находятся за синапсом, активизируются, и возникает постсинапсический потенциал. Он рождает импульс, движущийся к другому синапсу, и описанный выше процесс повторяется тысячи и тысячи раз. Это позволяет воспринимать и обрабатывать колос­сальный объем информации.

Во многих публикациях по неврологии и нейрофизиологии отмечается, что сложнейшая мозговая деятельность обеспечива­ется, в сущности, простыми средствами. Некоторые из авторов отмечают, что эта простота отражает универсальный закон «до­стижения большой сложности через многократные преобразо­вания простых элементов» (Э. Голдберг). Аналогично этому, множество слов в языке складывается из ограниченного числа звуков речи и букв алфавита, бесчисленные музыкальные мело­дии — из малого числа нот, генетические коды миллионов людей обеспечиваются конечным числом генов и т.д.


2.2. Анатомическая и функциональная дифференциация мозга

2.2.1. Поля коры мозга

Согласно сложившимся представлениям, кора мозга имеет шесть основных слоев, каждый из которых состоит из различных по форме и размеру нервных клеток. Этот анатомический факт имеет, однако, не столь важное значение для понимания нейропсихологических феноменов, как функциональная дифферен­циация коры на три основных вида полей — первичные, вторич­ные и третичные (рис. 8, цв. вкл.). Они различаются между собой по иерархии. Наиболее элементарными являются первичные, более сложными по строению и функционированию — вторич­ные, и, наконец, наиболее сложными по этим признакам явля­ются третичные поля.

Поля каждого из уровней имеют свою нумерацию, которая указывается на цитоархитектонических картах мозга. Наиболее распространенной из них является карта Бродмана (рис. 6, цв. вкл.).

Первичные поля — это «корковые концы анализаторов» и, как уже сообщалось выше, они функционируют от природы, врож­денно. Их локализация зависит от того, к какому анализатору они относятся.

Первичные поля, находящиеся в лобной доле (до центральной извилины), а именно поля 10, 11, 47, настроены на подготовку и исполнение двигательных актов, относящихся к физическому Уровню.

Первичные поля слухового анализатора располагаются пре­имущественно на внутренней поверхности височных долей мозга (поля 41, 42), кинестетического (чувствительного в целом) вблизи от центральной (Ролландовой) борозды, в теменной доле (поля 3, 1 и 2).

Первичные чувствительные (тактильные) поля характеризу­ются тем, что они являются проекционными зонами в отноше­нии определенных частей тела: верхние отделы принимают чувствительные сигналы (ощущения) от нижних конечностей (ног), средние обрабатывают ощущения от верхних конечностей, а нижние — от лица, включая отделы речевого аппарата (язык, гу­бы, гортань, диафрагму). Кроме того, нижние отделы теменной проекционной зоны принимают ощущения от некоторых внут­ренних органов. Алгоритм проекций тела в переднем блоке мозга тот же, что и в заднем. Они также являются проекционными, но уже в отношении не чувствительных (кинестетических), а двига­тельных функций. Главное отличие проекционных зон от других состоит в том, что размеры той или другой части тела определя­ются не анатомической, а функциональной значимостью.

Первичные клетки мозга в самом раннем онтогенезе функци­онируют изолированно друг от друга, подобно отдельным мирам в Космосе. Так, ребенок узнает голос матери, но не узнает ее ли­ца, если она молчит. Особенно часто разобщение слуховых и зрительных впечатлений на уровне ощущений наблюдается в от­ношении лица отца, которое младенцы видят реже, чем лицо ма­тери. В литературе описаны случаи, когда ребенок, увидев скло­ненное над ним лицо отца, начинает громко испуганно плакать, пока он не заговорит. Постепенно между первичными полями коры мозга прокладываются информационные связи (ассоци­ации). Благодаря им накапливается опыт ощущений, т.е. появля­ются элементарные знания о действительности. Например, ре­бенок «узнает», что сосание груди или бутылочки утоляет чувст­во голода.

2.2.2. Модально-специфическая кора мозга

Первичные поля однородны по клеточному составу, поэтому они обозначаются как модально-специфические. Обонятельные поля содержат только обонятельные нервные клетки, слуховые — только слуховые и т.п. Несмотря на универсальность физиологи­ческих и биохимических механизмов, обеспечивающих работу мозга, его различные отделы функционируют по-разному, т.е. имеют различную функциональную специализацию, представляя разные модальности.

Вторичные поля тоже модально-специфичны, хотя и менее однородны, чем первичные. В состав клеток преобладающей мо­дальности вкраплены клетки других модальностей. Третичные будучи зонами перекрытия, содержат не только клетки полых модальностей, но и их целые зоны. Исходя из этого, их обозначают как полимодальные или надмодальностные. Благодаря функционированию реализуются наиболее сложные ВПФ, и в частности, определенные речевые компоненты. Модально специфические структуры мозга вносят в них свой собственный и что особенно важно, суммарный вклад.

Вторичные и третичные поля коры, в отличие от первичных, имеют особенности функционирования в зависимости от латепализации, т.е. расположения в том или другом полушарии мозга. Например, височные доли разных полушарий, относясь к одной и той же, а именно, слуховой модальности, выполняют разную «работу». Височная доля правого полушария ответственна за об­работку неречевых шумов (издаваемых природой, включая «го­лоса животных» и голоса людей, предметами, включая музы­кальные инструменты и саму музыку, которую можно считать высшим видом неречевого шума). Височная же доля левого по­лушария осуществляет обработку речевых сигналов. Помимо различий в специализации височных долей мозга, относящихся к разным полушариям, здесь можно усмотреть и столь характер­ный для природы принцип «защиты» наиболее важных функ­ций, и тем более такой важной и необходимой любому человеку, как речь.

Различия в функциональной специфике первичных, вторич­ных и третичных полей обусловливают и различия в их способ­ности заменять друг друга (компенсировать) в случае патологии. Разрушение первичных полей не восполнимо, т.е. утерянные физический слух, зрение, обоняние и прочее не восстанавлива­ются. В самое последнее время это положение подвергается пе­ресмотру в связи с изучением регенерирующей роли так назы­ваемых стволовых клеток. Функции поврежденных вторичных полей подлежат компенсации, осуществляемой за счет подклю­чения других, «здоровых» систем мозга и перестройки способа их деятельности. Функции пострадавших третичных полей ком­пенсируются относительно легко за счет полимодальности, по­зволяющей опираться на мощную систему ассоциаций, храня­щихся в каждом из них и между ними. Необходимо, однако, помнить, что и в этом случае важное значение имеют возрастные пороги и время, когда начаты восстановительные мероприятия. Наиболее благоприятен ранний возраст и своевременное начало лечебных коррекционно-восстановительных мер.

Функционально все три вида полей коры соотносятся между собой вертикально: функции первичных, над ними надстраива­ются функции вторичных, а над вторичными — третичных. Однако анатомически они не располагаются подобным образом, т.е. друг над другом. Первичные поля составляют ядро той или иной анализаторной зоны, которая носит в нейропсихологии на­звание модальности. Вторичные поля находятся дальше от ядра, т.е. сдвинуты к периферии зоны, а третичные — еще далее. Про­порциональны близости к ядру и размеры разных по иерархии полей: первичные занимают наименьшую площадь, вторичные — большую, а третичные — самые большие по размеру. Вследствие этого последние накладываются друг на друга, образуя так назы­ваемые зоны «перекрытия». К ним относится, например, самая важная для ВПФ зона ТРО — височно-теменно-затылочная (temporahs — висок; panetahs — темя; oxipitahs — затылок).

В осуществлении высших психических функций наибольшее участие принимает слуховая, зрительная и тактильная кора.

Слуховая зона относится к сенсорной (воспринимающей) коре мозга. Основным ее отделом является, как указывает А.Р. Лурия, височная область левого полушария. В нее входят раз­ные по иерархии участки, что обусловливает сложность ее струк­турной и функциональной организации. Наиболее значимой из них является ядерная зона слухового анализатора, обеспечиваю­щая физический слух (поля 41, 42), — первичные поля слуховой коры. Далее от ядра располагается периферический отдел зоны (третичное поле 22). За ними следует область среднего виска, пог­раничная с теменной и затылочной областями (третичным по­лем 21 и частично с третичным полем 37). Средневисочные (внеядерные) отделы височной доли представлены третичной корой и являются более сложно организованными. Они, по представле­ниям нейропсихологии, ответственны за восприятие не единич­ных звуков речи и слов, а их серий, и тесно связаны многочис­ленными ассоциативными волокнами и со зрительной корой, что обусловливает ее участие в реализации слова. В зоне 37-го поля имеется также небольшая область перекрытия (наложение друг на друга височной и затылочной коры).

По данным Е.П. Кок, представленным в ее монографии «Зрительные агнозии», написанной еще в 1967 году, эта область наиболее приспособлена для овладения и дальнейшего владения словом. Е П. Кок подчеркивает, что слово — это единство зри­тельного образа предмета и его «звуковой оболочки», и, следова­тельно, наличие в одной зоне мозга слуховой и зрительной коры способствует выработке прочных образно-вербальных ассоци­аций.

Слово и его зрительный образ становятся прочно спаянны.

Чем прочнее эта «спайка», тем надежнее слово хранится в памяти и, напротив, чем она слабее, тем легче слово забывается (амнезия слова).

А.Р. Лурия пишет, что слуховое восприятие включает анализ синтез доходящих до субъекта сигналов уже на первых этапах их поступления.

Из этого следует, что процесс восприятия речи базируется не только на физическом слухе, но и на способности к анализу ус­лышанного. Функции такого анализа приписаны преимущественно вторичному височному полю 22, расположенному в верхней височной области.

Именно оно ответственно за дискретное восприятие звуков речи, в том числе, что принципиально важно, и за выделение из них акустических образов сигнальных (смыслоразличительных) признаков, получивших название фонематических.

Признается также, что фонематическая система языка фор­мируется при непосредственном участии артикуляционного ап­парата, благодаря чему вырабатываются и упрочиваются акустико-артикуляционные связи.

Помимо собственно коркового уровня слуховой зоны, имеет­ся базальное слуховое поле 20 и медиальный («глубокий») висок. Этот отдел мозга входит в так называемый «круг Пейпеца» (гиппокамп — ядра зрительного бугра — перегородки и мамиллярные тела — гипоталамус).

Медиальные отделы виска тесно связаны с неспецифически­ми образованиями лимбико-ретикулярного комплекса (отдела мозга, регулирующего тонус коры) — (рис. 12, цв. вкл ).

Такой состав медиального виска обусловливает его важней­шую особенность — способность регулировать состояние актив­ности коры мозга в целом, процессов нейродинамики, вегета­тивной сферы, а в рамках высшей психической деятельности — эмоций, сознания и памяти.



Зрительная кора

Первичная зрительная кора простирается с обеих сторон вдоль шпорной борозды на медиальной поверхности затылочной Доли и распространяется на конверситальную поверхность заты­лочного полюса. Ядерная зона зрительной коры — это первичное корковое поле 17. Вторичные поля коры (18, 19) составляют ши­рокую зрительную сферу. По отношению к принципу функционирования этой зоны актуален тот же пересмотр принципов Рефлекторной теории ощущений, о котором упоминалось при освещении функциональной специализации височной (слухо­вой) коры. В результате этого пересмотра зрительное восприятие стало рассматриваться не как пассивный процесс, а как активное действие

Основным отличием деятельности зрительной, как и кожно-кинестетической, теменной коры, является то, что воспри­нимаемые ею сигналы не выстраиваются в последовательные ря­ды, а объединяются в одновременные группы Благодаря этому обеспечиваются сложные зрительные дифференцировки, пред­полагающие способность выделять тонкие оптические призна­ки При очаговых поражениях этой области возникает нередко встречающаяся в клинической практике оптическая агнозия. Еще в 1898 году Э Лессауэр (Е Lissauer) обозначил ее как «аппер­цептивную душевную слепоту» и отметил, что больные, страдаю­щие ею, не узнают зрительных изображений даже знакомых предметов, хотя могут узнавать их на ощупь. Впоследствии опти­ческая зрительная агнозия была подробно изучена и описана Е. П. Кок, Л С Цветковой и др., показавшими ее связь с амнестической афазией

В наиболее высокой по иерархии теменно-затылочной коре, представляющей собой области, где соединяются центральные концы зрительного и тактильного анализаторов («зоны перекрытия»), стимулы внешней среды объединяются в «симультанные синтезы», позволяющие воспринимать одномоментно сложные изображения, например, сюжетные картины. По представлени­ям нейропсихологии, поражение данной области приводит к на­рушениям симультанного зрительного гнозиса и системно обус­ловленной семантической афазии.



Тактильная кора

Синтез тактильных сигналов осуществляют теменные отделы коры головного мозга, аналогично тому, как теменно-затылочная область осуществляет оптическое восприятие Ядерной зоной этого анализатора является область задней центральной извили­ны Первичные поля тактильной коры обеспечивают кожно-кинестетическую чувствительность на физическом уровне (поле 3) Вторичные оке поля (2, 1, 5, 7) специализированы в отношении сложной дифференциации тактильных сигналов (стереогноза) Благодаря им возможно распознавание предметов на ощупь.



Двигательная кора

Двигательный «анализатор» понимается как состоящий из двух, совместно работающих отделов мозговой коры (постцентяльного и прецентрального) Вместе они составляют сенсомоторную область коры.

Постцентральная кора, или, иначе, нижнетеменная кора, наравне первичных полей (10, 11, 47) принимает тактильные сиг­налы и перерабатывает их в тактильные ощущения, в том числе и речевые

На уровне вторичных полей (2, 1, 5, 7) она обеспечивает ре­ализацию отдельных поз — кинестезии тела, конечностей, рече­вого аппарата

В рамках переднего блока мозга левого полушария для рече­вой функции наиболее значимой является передняя центральная извилина — премоторная кора на уровне вторичных полей (6, 8) Она обеспечивает реализацию различных двигательных актов, представляющих собой серию последовательных движений и носящих название динамического или, иначе, эфферентного, праксиса Он, в свою очередь, составляет второе, дополнительно к афферентному, произвольное двигательное звено. Важно, что премоторная кора является способной не только выстраивать, но и запоминать двигательные последовательности (кинетические мелодии), без чего в рамках речевой деятельности было бы не­возможным плавное произнесение слов и фраз.

На уровне третичного поля 45 двигательная кора обеспечива­ет способность создавать программы различных видов деятель­ности. За счет этой области происходит оперирование типовыми программами освоенных действий, в том числе и речевых, на­пример, синтаксическими моделями предложений.

Ниже приведена таблица номеров полей мозга различных уровней (по Бродману)

Таблица 2


Мо даль­ности

Слуховая

Зрительная

Тактильная

«Двигательная»

Тип по­ля коры

I

II

III

I

II

III

I

II

III

I

II

III

по­ля


41,

42,


22.

21,

37


17.

18,

19.


-

3

2,1,

5, 7.


39,

4 0.


10,

11,47.


6,8.

45.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   24




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет