Образовательная программа «6D060722- молекулярная и клеточная биология»



бет10/11
Дата11.07.2016
өлшемі2.9 Mb.
#192326
түріОбразовательная программа
1   2   3   4   5   6   7   8   9   10   11

Исследованные сайты генов PTPN12, MSH6, ZEB1 показывает стабильную консервативность сайтов микроРНК среди млекопитающих и позвоночных, что свидетельствует о значимости данных сайтов в регуляции генов мишеней.


Таблица 29 - Схемы взаимодействия нуклеотидных последовательностей в сайтах связывания hsa-miR-1279 с мРНК генов MSH6, ZEB1 разных животных


Сайты связывания

Виды с идентичным сайтом

мРНК MSH6 5’ N A N 3’

GGAAGGAAGCAGUG UGA

UCUUUCUUCGUUAU ACU

miR-1279 3’ 5’



Clu, Cpo, Eca, Hsa, Mdo, Mml, Mmu, Nle, Pab, Ptr, Ssc

мРНК ZEB1 5’ N C N 3’

GGAGAGAAGC AUAUGA

UCUUUCUUCG UAUACU

miR-1279 3’ U 5’



Ame, Cja, Clu, Bta, Gga, Hsa, Mml, Nle, Pab, Ptr

N – может быть любым нуклеотидом (А, Г, У, С).

Полученные результаты свидетельствуют, что сайты связывания с высокой комплементарностью, локализованные в кодирующей области мРНК, высоко консервативны среди позвоночных.

В результате исследования филогенетической консервативности сайтов связывания микроРНК c мРНК были опубликованы ряд публикаций [348-350].

ЗАКЛЮЧЕНИЕ
Настоящая диссертация посвящена идентификации важных генов и микроРНК, которые участвуют в развитии рака толстой кишки. Для этого были созданы база данных по генам с наличием мутаций при этом заболевании и база данных по микроРНК, у которых обнаружено изменение экспрессии при РТК. Из базы отобраны 54 белок кодирующих гена, которые имеют важную функциональную роль и наибольшее количество исследований и на их основе проведен поиск микроРНК с помощью программы RNAhybrid, которые регулируют эти гены. Для этого была разработана методика отбора сайтов микроРНК на основе введенного нами параметра score (ΔG/ΔGm). В результате исследования были идентифицированы 120 микроРНК, которые могут быть ключевыми молекулами в регуляции 47 генов мишеней. Найденные сайты микроРНК имеют почти полную комплементарность и ранее не описаны в других исследованиях. Как показано в работе Brennecke с соавторами (таблица 6) [146] многие не канонические сайты могут иметь очень высокую регуляторную эффективность. Большинство описанных нами сайтов относятся к неканоническим сайтам, так как имеют Г:У пары и неспаренные нуклеотиды в 5'конце микроРНК. При сравнении сайтов предсказанных с помощью программ RNAhybrid, TargetScan и miRanda было установлено, что программа TargetScan предсказывает только канонические сайты связывания микроРНК и не находит всех комплементарных пар в канонических сайтах с высокой комплементарностью. Программа miRanda предсказывает все сайты, найденные с помощью программы RNAhybrid, но большинство этих сайтов не доступны на он-лайн резурсе microrna.org, которая представляет сайты предложенные программой miRanda. Программы TargetScan и miRanda широко используются среди исследователей для поиска значимых микроРНК в регуляции определенных генов. В связи с этим сайты с высокой комплементарностью описанные в нашей работе еще не изучены. Для подтверждения сайтов связывания микроРНК исследована филогенетическая консервативность сайтов микроРНК. Установлено, что сайты в 3'нетранслируемой области имеют низкую консервативность, а сайты, расположенные в кодирующей последовательности мРНК, высоко консервативны среди позвоночных. Мы надеемся, что описанные сайты будут основой для разработки молекулярных маркеров для диагностики и разработки лекарственных средств для лечения рака.

На основе полученных результатов были сделаны следующие выводы:

1. Из 142 генов кандидатов, ответственных за развитие рака толстой кишки, выявлено 54 гена, имеющих ключевую роль в развитии рака, и создана база данных по этим генам.

2. Найдены 185 потенциальных сайта взаимодействия для 120 межгенных микроРНК, которые могут регулировать 47 из 54 генов, ответственных за развитие рака толстой кишки. Все описанные сайты имеют высокий уровень комплементарности.

3. Сайты взаимодействия микроРНК расположены во всех участках мРНК. Установлено, что 23%, 42%, 35% сайтов находятся в 5'UTR, CDS и 3'UTR мРНК, а средняя плотность сайтов связывания микроРНК в 5'UTR в четыре раза выше, чем в CDS и 3'UTR.

4. Установлены три вида сайтов связывания микроРНК с мРНК в зависимости от вклада микроРНК в энергию гибридизации: 5'-доминантный, 3'-доминантный сайты и сайты с центральным доминированием. Неспаренные нуклеотиды во вторичной структуре мРНК служат основой для образования связи между микроРНК и мРНК.

5. Модифицированная программа RNAhybrid позволяет находить большее число достоверных сайтов связывания и лучше определять характеристики взаимодействия микроРНК с мРНК.

6. Сайты взаимодействия микроРНК расположенные в 3'UTR имеют низкую филогенетическую консервативность, а сайты в CDS имеют высокую консервативность.



СПИСОК ИСТОЧНИКОВ
1 Земляной В.П., Трофимова Т.Н., Непомнящая С.Л., Дементьева Т.В. Современные методы диагностики и оценки степени распространенности рака ободочной и прямой кишки // Практическая онкология. - 2005. - Т. 6, № 2. - C. 71-80.

2 Ogino S., Brahmandam M., Kawasaki T., Kirkner G.J., Loda M., Fuchs C.S. Epigenetic profaling of synchronous colorectal neoplasias by quantitative DNA methylation analysis // Mod Pathol. - 2006. - № 19. - P. 1083-1090.

3 Jian-Xin Gao. Cancer stem cells: the lessons from pre-cancerous stem cells // J. Cell. Mol. Med. - 2008. - Vol. 12, № 1. - P. 67-96.

4 Richman S.D., Seymour M.T., Chambers P., Elliott F., Daly C.L., Meade A.M., Taylor G., Barrett J.H., Quirke P. Kras and BRAF mutations in advanced colorectal cancer are associatedwith poor prognosis but do not preclude benefit from oxaliplatin or irinotecan, results from the MRC FOCUS trial // J. Clin. Oncol. - 2009. - Vol. 27. - P. 5931-5937.

5 Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer // Cancer Res. - 1998. - Vol. 58. - P. 1130-1134.

6 Toyota M., Ahuja N., Ohe-Toyota M., Herman J. G., Baylin S. B., Issa J. P. J. CpG island methylator phenotype in colorectal cancer // Proceedings of the National Academy of Sciences of the United States of America. - 1999. Vol. 96, № 15. - P. 8681-8686.

7 Neklason D.W., Kerber R.A., Nilson D.B., Anton-Culver H., Schwartz A.G., et al. Common familial colorectal cancer linked to chromosome 7q31: A genome-wide analysis // Cancer research. - 2008. - Vol. 68, № 21. - P. 8993-8997.

8 Markowitz S. D., Bertagnolli M. M. Molecular origins of cancer: molecular basis of colorectal cancer // New England Journal of Medicine. - 2009. Vol. 361, № 25. P. 2449-2460.

9 Jasperson K. W., Tuohy T. M., Neklason D. W., and Burt R. W. Hereditary and familial colon cancer // Gastroenterology. - 2010. - Vol. 138. - № 6. - P. 2044–2058.

10 Lee R. C., Feinbaum R. L., et al. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. - 1993. - Vol. 75, № 5. - P. 843-854.

11 Garzon R., Calin G.A.,Croce C.M. MicroRNAs in cancer // Annur Rev Med. - 2009. - № 60. - P. 167-179.

12 Aukerman M. J., Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes // Plant Cell. - 2003. - Vol. 15, № 11. - P. 2730-2741.

13 Chen C. Z., Li L., et al. MicroRNAs modulate hematopoietic lineage differentiation // Science. - 2004. - Vol. 303, № 5654. - P. 83-86.

14 Brennecke J., Hipfner D.R., Stark A., Russell R.B., Cohen S.M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila // Cell. - 2003. Vol. 113. - P. 25-36.

15 Lewis Benjamin P., Christopher B. Burge, David P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets // Cell. - 2005. - Vol. 120, № 1. - P. 15-20.

16 Lewis B. P., Shih I-hung, Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of Mammalian MicroRNA Targets // Cell. - 2003. - Vol. 115. - P. 787-798.

17 Griffiths-Jones S., Grocock R.J., Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature // NAR. – 2006. - Vol. 34, № 1. – P. 140-144.

18 Lee I., Ajay S.S., Yook J.I., Kim H.S. et al. New class of microRNA targets containing simultaneous 5’-UTR and 3’UTR interaction sites // Genome Res. - 2009. – Vol. 19, № 7. – P. 1175-83.

19 Ferlay J., et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 // Int J Cancer. - 2010. - 127(12). - p. 2893-2917.

20 Ferlay J., Shin H.R, Bray F., Forman D., Mathers C., Parkin D.M. GLOBOCAN 2008 v. 1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase № 10 [Internet]. Lyon, France: International Agency for Research on Cancer, 2010. Available from: http: // globocan.iarc.fr.§ Accessed May 2011]

21 Cunningham D., Atkin W., Lenz H.J., et al. Colorectal cancer // The Lancet. – 2010. - Vol. 375, no 9719. - Р. 1030-1047.

22 Садықов М.С. Лучевая диагностика рака толстой кишки // Вестник КазНМУ. - 2012.

23 Турбекова М.Н., Егеубаева С.А. Современные подходы к раннему выявлению колоректального рака // Вестник КазНМУ. - 2012.

24 Lichtenstein P., et al. Environmental and heritable factors in the causation of cancer // New England Journal of Medicine. - 2000. - Vol. 343. - Р. 78-85.

25 Grady W.M. Genetic testing for high-risk colon cancer patients // Gastroenterology. - 2003. - Vol. 124, № 6. - Р. 1574-94.

26 Мартынюк В.В. Рак ободочной кишки (заболеваемость, смертность, факторы риска, скрининг) // Практическая онкология. - 2000. - №1. - С. 3-9.

27 Leggett B., Whitehall V. Role of the Serrated Pathway in Colorectal Cancer Pathogenesis // Gastroenterology. – 2010. – Vol. 138. – P. 2088–2100.

28 Half E., Bercovich D., and Rozen P. Familial adenomatous polyposis // Orphanet Journal of Rare Diseases. - 2009. - Vol. 4, № 1. - Article 22.

29 Lüchtenborg M., Weijenberg M.P., Roemen M. J. M., Bruïne P., Brandt P., Lentjes H. F. M., Brink M., Engeland M., R. Goldbohm A., Goeij A. APC mutation in sporadic colorectal carcinomas from The Netherlands Cohort Study // Carcinogenesis. - 2004. - Vol. 25. - P. 1219-1226.

30 Benchabane H.and Ahmed Y. The adenomatous polyposis coli tumor suppressor and Wnt signaling in the regulation of apoptosis // Advances in Experimental Medicine and Biology. - 2009. - Vol. 656. - P. 75-84.

31 Juhn E. and Khachemoune A. Gardner syndrome: skin manifestations, differential diagnosis and management // American Journal of Clinical Dermatology. - 2010. - Vol. 11, № 2. - P. 117–122.

32 Todor V., Chirila D., Tompa S. Familian colorectal cancer: The Lynch syndrome // Chirurgia. - 1998. - Vol. 93. - P. 427-432.

33 Lynch H. T., Lynch P. M., Lanspa S. J., Snyder C. L., Lynch J. F., and Boland C. R. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications // Clinical Genetics. 2009. - Vol. 76, №1. - P. 1–18.

34 Hampel H., et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer // J Clin Oncol. - 2008. - Vol. 26, № 35. P. 5783–8.

35 Hare H. H., Mahendraker N., Sarwate S., and Tangella K. Muir-Torre syndrome: a rare but important disorder // Cutis. - 2008. Vol. 82, № 4. - P. 252–256.

36 Kopacova M., Tacheci I., Rejchrt S., and Bures J. Peutz-Jeghers syndrome: diagnostic and therapeutic approach // World Journal of Gastroenterology. 2009. - Vol. 15, № 43. P. 5397-5408.

37 Beggs A. D., Latchford A. R., Vasen H. F. A., et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management // Gut. - 2010. - Vol. 59, № 7. - P. 975-986.

38 Jenne D. E., Reimann H., Nezu J. I., et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase // Nature Genetics. - 1998. - Vol. 18, № 1. - P. 38–43.

39 Calva D.and Howe J. R. Hamartomatous polyposis syndromes // Surgical Clinics of North America. - 2008. - Vol. 88, № 4.- P. 779–817.

40 Brosens L. A. A., Van Hattem A., Hylind L. M., et al. Risk of colorectal cancer in juvenile polyposis // Gut. - 2007. - Vol. 56, № 7. P. 965–967.

41 Rubio C. A., Stemme S., Jaramillo E., Lindblom A. Hyperplastic polyposis coli syndrome and colorectal carcinoma // Endoscopy. - 2006. - Vol. 38, № 3. - P. 266-270.

42 Jass J. Hamilton S. R., Aaltonen L. A., Eds. “Hyperplastic polyposis” in Pathology and Genetics of Tumors of the Digestive System // International Agency for Research on Cancer, Lyon, France. - 2000. - P. 135-136.

43 Michor F., Iwasa Y., Lengauer C., Nowak M.A. Dynamics of colorectal cancer // Seminars in cancer biology. – 2005. - Vol. 15, № 6. – P. 484-493.

44 Muleris M., Chalastanis A., Meyer N., et al. Chromosomal instability in near-diploid colorectal cancer: a link between numbers and structure // PLoS ONE. - 2008. - Vol. 3, № 2. - Article ID e1. 632.

45 Camps J., Armengol G., del Rey J., et al. Genome-wide differences between microsatellite stable and unstable colorectal tumors // Carcinogenesis. - 2006. - Vol. 27, № 3. P. 419-428.

46 Grady W. M., Carethers J. M. Genomic and epigenetic instability in colorectal cancer pathogenesis // Gastroenterology. - 2008. Vol. 135, № 4. P. 1079-1099.

47 Lengauer C., Kinzler K. W., Vogelstein B. Genetic instability in colorectal cancers // Nature. - 1997. Vol. 386, № 6625. P. 623–627.

48 Hermsen M., Postma C., Baak J., et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability // Gastroenterology. – 2002. - Vol. 123, № 4. P. 1109-1119.

49 Diep C. B., Kleivi K., Ribeiro F. R., Teixeira M. R., Lindgjærde O. C., Lothe R. A. The order of genetic events associated with colorectal cancer progression inferred from meta-analysis of copy number changes // Genes Chromosomes and Cancer. - 2006. - Vol. 45, № 1. P. 31-41.

50 Martinez-Lopez E., Abad A., Font A., et al. Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer // Gastroenterology. 1998. - Vol. 114, № 6. P. 1180-1187.

51 Goto T., Mizukami H., Shirahata A., et al. Aberrant methy-lation of the p16 gene is frequently detected in advanced colorectal cancer // Anticancer Research. - 2009. -Vol. 29, № 1. P.275–277.

52 Bernet A., Mazelin L., Coissieux M. M., et al. Inactivation of the UNC5C netrin-1 receptor is associated with tumor progression in colorectal malignancies // Gastroenterology. - 2007. - Vol. 133, № 6. P. 1840-1848.

53 Hibi K., Nakao A. Highly-methylated colorectal cancers show poorly-differentiated phenotype // Anticancer Research. - 2006. - Vol. 26, № 6 B. P. 4263-4266.

54 Kamiyama H., Noda H., Takata O., Suzuki K., Kawamura Y., Konishi F. Promoter hypermethylation of tumor-related genes in peritoneal lavage and the prognosis of patients with colorectal cancer // Journal of Surgical Oncology. - 2009. -Vol. 100, № 1. - P. 69-74.

55 Xu X. L., Yu J., Zhang H. Y., et al. Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis // World Journal of Gastroenterology. - 2004. - Vol. 10, № 23. - P. 3441-3454.

56 Mulero-Navarro S., Esteller M. Chromatin remodeling factor CHD5 is silenced by promoter CpG island hyperme-thylation in human cancer // Epigenetics. - 2008. - Vol. 3, № 4. - P. 210-215.

57 Vlaicu S. I., Tegla C. A., Cudrici C. D., et al. Epigenetic modifications induced by RGC-32 in colon cancer,” Experimental and Molecular Pathology, vol. 88, № 1, pp. 67–76, 2010.

58 Chen J., Rocken C., Lofton-Day C., Schulz H-U., Muller O., Kutzner N., Malfertheiner P., Ebert M. Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis // Cancirogenesis. - 2005. Vol. 26, № 1. - P. 37-43.

59 Takano Y., Shiota G., Kawasaki H. Analysis of genomic imprinting of insulin-like growth factor 2 in colorectal cancer // Oncology. - 2000. - № 59. - P. 210-216.

60 Huang K., et al. GSTM1 and GSTT1 polymorphisms, cigarette smoking, and risk of colon cancer: a population-based case-control study in North Carolina (United States) // Cancer Causes Control. - 2006. - Vol. 17, № 4. P. 385-94.

61 Ritchie K.J., et al. Markedly enhanced colon tumorigenesis in ApcMin mice lacking glutathione S-transferase Pi // Proc Natl Acad Sci U S A. - 2009.

62 Lucia Migliore, Francesca Migheli, Roberto Spisni, Fabio Copped. Genetics, Cytogenetics, and Epigenetics of Colorectal Cancer // Journal of Biomedicine and Biotechnology. - 2011. - Vol. 2011, Article ID 792362. - P. 19.

63 Morimoto L.M., et al. Insulin-like growth factor polymorphisms and colorectal cancer risk // Cancer Epidemiol Biomarkers Prev. - 2005. - Vol. 14, № 5. - P. 1204 -11.

64 Xu Y., Pasche B. TGF-beta signaling alterations and susceptibility to colorectal cancer // Hum Mol Genet. - 2007. - Vol. 16, № 1. - P. 14-20.

65 Broderick P., et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk // Nat Genet. - 2007. - Vol. 39, № 11. - P. 1315-1317.

66 Rennert G., et al. Colorectal polyps in carriers of the APC I1307K polymorphism // Dis Colon Rectum. - 2005. - Vol. 48, № 12. - P. 2317-21.

67 Zauber N.P., et al. The characterization of somatic APC mutations in colonic adenomas and carcinomas in Ashkenazi Jews with the APC I1307K variant using linkage disequilibrium // J Pathol. - 2003. - Vol. 199, № 2. P. 146-51.

68 Tranah G.J., et al. APC Asp1822Val and Gly2502Ser polymorphisms and risk of colorectal cancer and adenoma // Cancer Epidemiol Biomarkers Prev. - 2005. - Vol. 14, № 4. - P. 863-70.

69 Merlos-Suarez Anna, Francisco M. Barriga, Peter Jung, Mar Iglesias, Marıa Virtudes Cespedes et al. The Intestinal Stem Cell Signature Identifies Colorectal Cancer Stem Cells and Predicts Disease Relapse // Cell Stem Cell. - 2011. -doi:10.1016/j.stem.2011.02.020

70 Brittan M., Wright N.A. Gastrointestinal stem cells // J Pathol. - 2002. - Vol. 197. - P. 492-509.

71 Thomas Klonisch, Emilia Wiechec, Sabine Hombach-Klonisch, Sudharsana R. Ande, Sebastian Wesselborg, Klaus Schulze-Osthoff, Marek Los. Cancer stem cell markers in common cancers – therapeutic implications // Trends in Molecular Medicine. - 2008. - Vol.14, № 10. - P. 450-460.

72 Croker A.K., Allan A.L. Cancer stem cells: implications for the progression and treatment of metastatic disease // J. Cell. Mol. Med. - 2008. - Vol 12, №2. - P. 374-390.

73 O’Brien CA, Pollett A., Gallinger S., et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice // Nature. - 2007. - Vol. 445. - P. 106–110.

74 Ricci-Vitiani L., et al. Identification and expansion of human colon-cancer-initiating cells // Nature. - 2007. - Vol. 445. - P. 111-115.

75 Dalerba P., et al. Phenotypic characterization of human colorectal cancer stem cells // Proc. Natl. Acad. Sci. U. S. A. - 2007. - Vol. 104. - P. 10158-10163.

76 O'Brien C.A., Kreso A., Jamieson C.H. Cancer stem cells and self-renewal // Clin. Cancer Res. - 2010. - Vol. 16. - P. 3113-3120.

77 Todaro M., Francipane M.G., Medema, J.P., Stassi G. Colon cancer stem cells: Promise of targeted therapy // Gastroenterology. - 2010. - Vol. 138. P. 2151-2162.

78 Kosinski C., Li V.S., Chan A.S., Zhang J., Ho C., Tsui W.Y., Chan T.L., Mifflin R.C., Powell D.W., Yuen S.T., Leung S.Y., Chen X. Gene expression patterns of human colon tops and basal crypts and bmp antagonists as intestinal stem cell niche factors // Proc. Natl. Acad. Sci. USA. - 2007. - Vol. 104. - P. 15418-15423.

79 Veronica Catalano, Miriam Gaggianesi, Valentina Spina, Flora Iovino, Francesco Dieli, Giorgio Stassi, Matilde Todaro. Colorectal Cancer Stem Cells and Cell Death // Cancers. - 2011. - Vol. 3. - P. 1929-1946.

80 Joanna Papailiou, Konstaninos J. Bramis, Maria Gazouli, George Theodoropoulos. Stem cells in colon cancer. A new era in cancer theory begins // Int J Colorectal Dis. – 2011. – Vol. 26. – P. 1–11.

81 Marzouk O., Schofield J. Review of histopathological and molecular prognostic features in colorectal cancer // Cancers. - 2011. - Vol. 3. - P. 2767-2810

82 Greene F.L. Current TNM staging of colorectal cancer // Lancet Oncol. - 2007. - Vol. 8. - P. 572-573.

83 Gunderson L.L., Jessup J.M., Sargent D.J., Greene F.L. Stewart A.K. Revised TN categorization for colon cancer based on national survival outcomes data // J. Clin. Oncol. - 2010. - Vol. 28. P. 264-271.

84 Marzouk O., Schofield J. Review of histopathological and molecular prognostic features in colorectal cancer // Cancers. - 2011. - Vol. 3. - P. 2767-2810.

85 Стенина М.Б. Рак ободочной кишки: стандартное обследование для оценки степени распространения и выбор лечебной тактики с учетом предоперационной стадии заболевания // Практическая онкология. - 2000. - № 1. С. 10-13.

86 Vogelstein B., Fearson E.R., Hamilton S.R., Kern S.E., Preisinger AC., Leppert M., Nakamura Y., White R., Smits A.M., Bos J.L. Genetic alterations during colorectal-tumor devepopment // N. Engl. J. Med. – 1988. – Vol. 319. – P. 525-532.

87 Peyssonnaux C., Eychene A. The Raf/MEK/ERK pathway: New concept of of activation // Biol. Cell. - 2001. - Vol. 93. - P. 53-62.

88 Garnet M.J., Rana S., Paterson H., Barford D., Marais R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization // Mol. Cell. - 2005. - Vol. 20. - P. 963-969.

89 Andreyev H.J.N., Norman A.R., Cunningham D., et al. Kirsten ras mutations in patients with colorectal cancer, the 'RASCAL II' study // British Journal of cancer. - 2001. - Vol. 86, № 5. - P. 692-696.

90 Souglakos J., Philips J., Wang R., Marwash S., Silver M., Tzardi M., Silver J., Ogino S., Hooshmand S., Kwak E., et al. Prognostic and predictive value of common mutatins for treatment response and survival in patients with metastatic colorectal cancer // J. Cancer. - 2009. - Vol. 101. - P. 465-472.

91 Bardelli A., Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer // J. Clin. Oncol. - 2010. - Vol. 28. - P. 1254-1261.

92 Sartore-Bianchi A., Di Nicolantonio F., Nichelatti M., Molinari F., De Dosso S., Saletti P., Martini M., Cipani T., Marrapese G., Mazzucchelli L., et al. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer // PloS One. - 2009. - Vol. 4. - e. 7287.

93 Pinto D., Clevers H. Wnt, stem cells and cancer in the intestine // Biol. Cell. - 2005. - Vol. 97. P. 185-196.

94 Scoville D.H., Sato, T., He, X.C., Li L. Current view: Intestinal stem cells and signaling // Gastroenterology. - 2008. - Vol. 134. P. 849-864.

95 Korinek V., Barker N., Moerer P., van Donselaar E., Huls G., Peters P.J., Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 // Nat. Genet. - 1998. - Vol. 19. - P. 379-383.

96 Fevr T., Robine S., Louvard D., Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells // Mol. Cell Biol. - 2007. - Vol. 27. - P. 7551-7559.

97 Nishisho I., Nakamura Y. Miyoshi Y., Miki Y., Ando H., Horii A., Koyama K., Utsunomiya J., Baba S., Hedge P. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients // Science. - 1991. - Vol. 253, - P. 665-669.

98 Liu C., Li Y., Semenov M., Han C., Baeg G.H., Tan Y., Zhang Z., Lin X., He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism // Cell. - 2002. - Vol. 108. - P. 837-847.

99 Wu X., Tu X., Joeng K.S., Hilton M.J., Williams D.A., Long F. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling // Cell. - 2008. - Vol. 133. - P. 340-353.

100 Clevers H., van de Wetering M. Tcf/lef factor earn their wings // Trends Genet. – 1997. - Vol. 13. - P. 485-489.

101 Mosimann C., Hausmann G., Basler K. Beta-catenin hits chromatin: Regulation of Wnt target gene activation // Nat. Rev. Mol. Cell Biol. - 2009. - Vol. 10. - P. 276-286.

102 Inoki K., Ouyang H., Zhu T., Lindvall C., Wang Y. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth // Cell. - 2006. - Vol. 126. - P. 955-968.

103 Zeilstra J., Joosten S.P., Dokter M., Verwiel E., Spaargaren M., Pals S.T. Deletion of the Wnt target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis // Cancer Res. - 2008. - Vol. 68. - P. 3655-3661.

104 Tetsu O., McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells // Nature. - 1999. - Vol. 398. - P. 422-426.

105 van de Wetering M., Sancho E., Verweij C., de Lau W., Oving I. et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells // Cell. - 2002. - Vol. 111. - P. 241-250.

106 Kenneth C. Valkenburg, Carrie R. Graveel, Cassandra R. Zylstra-Diegel, Zhendong Zhong and Bart O. Williams. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells // Cancers. - 2011. - Vol. 3. - P. 2050-2079.

107 Исабекова А.С., Иващенко А.Т. Роль генов белков и микроРНК в развитии рака толстой кишки // Известия НАН РК. Серия биологическая и медицинская. 2010. - № 2 (278). - C. 56-62.

108 Russo A., Bazan V., Iacopetta B., Kerr D., Soussi T., Gebbia N. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment // Journal of Clinical Oncology. - 2005. - Vol. 23, № 30. - P. 7518-7528.

109 Iacopetta B., Russo A., Bazan V., et al. Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study // Annals of Oncology. - 2006. - Vol. 17, №5. - P. 842-847.

110 Berg M. Genomics of Colorectal Carcinomas from Young and Elderly Patients // Ph.D. Thesis, University of Oslo, Oslo, Norway. - 2010.

111 Berg M., Søreide K. Genetic and Epigenetic Traits as Biomarkers in Colorectal Cancer // Int. J. Mol. Sci. - 2011. - Vol. 12. - P. 9426-9439.

112 Sjoblom T., Sian J., Laura D.W., Williams Parsons D., Jimmy L., et al. The consensus coding sequences of human breast and colorectal cancers // Science. - Vol. 314. - P. 268-274.

113 Kulendran M., Stebbing J.F., Marks C.G., Rockall T.A. Predictive and Prognostic Factors in Colorectal Cancer: A Personalized Approach // Cancers. - 2011. - Vol. 3. - P. 1622-1638.

114 American College of Physicians. Suggested technique for fecal occult blood testing and interpretation in colorectal cancer screening // Ann. Int. Med. - 1997. - Vol. 126. - P. 808-810.

115 Mandel J.S., Bond J.H., Church T.R., Snover D.C., Bradley G.M., Schuman L.M., Ederer F. Reducing mortality from colorectal cancer by screening for fecal occult blood // N. Engl. J. Med. - 1993. - Vol. 328. - P. 1365-1371.

116 Mandel J.S., Church T.R., Ederer F., Bond J.H. Colorectal cancer mortality: Effectiveness of biennial screening for fecal occult blood // J. Nat. Cancer Inst. - 1999. - Vol. 91. - P. 434-437.

117 Brenner D.E., Rennert G. Fecal DNA biomarkers for the detection of colorectal neoplasia: Attractive, but is it feasible // J. Nat. Cancer Inst. - 2005. -Vol. 97. - P. 1107-1109.

118 Ned R.M., Melillo S., Marrone M. Fecal DNA testing for colorectal cancer screening: The colosure test // PLoS Curr. – 2011. Vol. 3. - doi:10.1371/currents.RRN1220.

119 Azuara D., Rodriguez-Moranta F., de O.J., Soriano-Izquierdo A., Mora J., Guardiola J., Biondo S., Blanco I., Peinado M.A., Moreno V., et al. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin // Colorectal Cancer. - 2010. - Vol. 9. - P. 168-176.

120 Model F., Osborn N., Ahlquist D., Gruetzmann R., Molnar B., Sipos F., Galamb O., Pilarsky C., Saeger H.D., Tulassay Z., et al. Identification and validation of colorectal neoplasia-specific methylation markers for accurate classification of disease // Mol. Cancer Res. - 2007. - Vol. 5. - P. 153-163.

121 Carlson M.R. Previstage gcc colorectal cancer staging test: A new molecular test to identify lymph node metastases and provide more accurate information about the stage of patients with colorectal cancer // Mol. Diagn. Ther. - 2009. - Vol. 13. - P. 11-14.

122 Tan, I.B.; Tan P. Genetics: An 18-gene signature (coloprint(r)) for colon cancer prognosis // Nat.Rev. Clin. Oncol. - 2011. - Vol. 8. - P. 131-133.

123 Clark-Langone K.M., Sangli C., Krishnakumar J., Watson D. Translating tumor biology into personalized treatment planning: Analytical performance characteristics of the oncotype dx colon cancer assay // BMC Cancer. - 2010. - Vol. 10. - P. 691.

124 Bosch L.J., Carvalho B., Fijneman R.J., Jimenez C.R., PinedoH.M., van E.M., Meijer G.A. Molecular tests for colorectal cancer screening // Clin. Colorectal Cancer. – 2011. - Vol. 10. – P. 8-23.

125 Slaby O., Svoboda M., Michalek J., Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application // Molecular Cancer. - 2009. - Vol. 8, № 102. - P. 1-13.

126 Wightman B., Ha I., et al. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans // Cell. - 1993. - Vol. 75, № 5. - P. 855-862.

127 Reinhart B. J., Slack F. J., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans // Nature. - 2000. - Vol. 403, № 6772. - P. 901-906.

128 Pasquinelli A. E., Reinhart B. J., et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA // Nature. - 2000. - Vol. 408, № 6808. - P. 86-89.

129 Baulcombe D. C. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants // Plant Mol Biol. - 1996. - Vol. 32. - P. 79-88.

130 Fire A., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans // Nature. 1998. - Vol. 391. - P. 806-811.

131 Brennecke J., Cohen S. M. Towards a complete description of the microRNA complement of animal genomes // Genome Biol. - 2003. - Vol. 4, № 9. - P. 228.

132 Xu P., Vernooy S. Y., et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism // Curr Biol. - 2003. - Vol. 13, № 9. - P. 790-795.

133 Emery J. F., Floyd S. K., et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes // Curr Biol. - 2003. - Vol. 13, № 20. - P. 1768-1774.

134 Vasudevan S., Tong Y., Steitz J.A. Switching from repression to activation: microRNAs can up-regulate translation // Science. - 2007. - № 318. - P. 1931-4.

135 Mattaj I.W., Tollervey D., Seraphin B. Small nuclear RNAs in messenger RNA and ribosomal RNA processing/ The FASEB Journal. - 1993. - № 7. - P. 47-53.

136 Bachellerie J.P., Cavaille J., Huttenhoffer A. The expanding snoRNA world // Biochimie. - 2002. - № 84. - P. 775-90.

137 Ambros V., Lee R.C., Lavanway A., Williams P.T., Jewell D. MicroRNA and other tiny endogenous RNAs in C.elegans // Curr Biol. - 2003. - № 13. - P. 807-18.

138 Stower H. Small RNAs: piRNA surveillance in the C. elegans germline // Nature Reviews Genetics. – 2012. - Vol. 13. - P. 518-519.

139 Lagos-Quintana M., Rauhut R., et al. Identification of novel genes coding for small expressed RNAs // Science. - 2001. - Vol. 294, № 5543. - P. 853-858.

140 Lau N. C., Lim L. P., et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans // Science. - 2001. - Vol. 294, № 5543. - P. 858-862.

141 Lin S. L., Miller J. D., et al. Intronic microRNA (miRNA) // J Biomed Biotechnol. - 2006. - Vol. 4. - P. 26818.

142 Li S. C., Tang P., et al. Intronic microRNA: discovery and biological implications // DNA Cell Biol. - 2007. - Vol. 26, № 4. - P. 195-207.



  1. 143 Issabekova A.S., Berillo O.A., Khailenko V., Atambayeba S.A., Regnier M., Ivachshenko A.T. Characteristics of intronic and intergenic human miRNAs and features of their interaction with mRNA // Conference Proceeding «International Conference on Bioinformatics, Computational Biology and Biomedical Engineering». Paris. France. - 2011. - P.63-66.

144 Aravin A. A., Lagos-Quintana M., et al. The small RNA profile during Drosophila melanogaster development // Dev Cell. - 2003. - Vol. 5, № 2. - P. 337-350.

145 Lee Y., Kim M., Han J., Yeom K. H. H., Lee, S., Baek, S. H. H., Kim, V. N. MicroRNA genes are transcribed by RNA polymerase II // The EMBO journal. - 2004. - Vol. 23. - P. 4051-4060

146 Zeng Y., Wagner E. J., et al. Both natural and designed micro RNAs can inhibit the expression of cognate мРНКs when expressed in human cells // Mol Cell. - 2002. - Vol. 9, № 6. - P. 1327-1333.

147 Borchert G. M., Lanier W., et al. RNA polymerase III transcribes human microRNAs // Nat Struct Mol Biol. - 2006. - Vol. 13, № 12. - P. 1097-1101.

148 Lee Y., Ahn C., et al. The nuclear RNase III Drosha initiates microRNA processing // Nature. - 2003. - Vol. 425, № 6956. - P. 415-419.

149 Lund E., Guttinger S., et al. Nuclear export of microRNA precursors // Science. - 2004. - Vol. 303, № 5654. - P. 95-98.

150 Hammond S. M., Boettcher S., et al. Argonaute2, a link between genetic and biochemical analyses of RNAi // Science. - 2001. - Vol. 293, № 5532. - P. 1146-1150.

151 Ishizuka A., Siomi M. C., et al. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins // Genes Dev. -2002. -Vol. 16, № 19. -P. 2497-2508.

152 Tabara H., Yigit E., et al. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans // Cell. - 2002. - Vol. 109, № 7. - P. 861-871.

153 Kim V. N., Han J., et al. Biogenesis of small RNAs in animals // Nat Rev Mol Cell Biol. - 2009. - Vol. 10, № 2. - P. 126-139.

154 Denli A. M., Tops B. B., Plasterk R. H., Ketting R. F., Hannon G. J. Processing of primary microRNAs by the Microprocessor complex // Nature. - 2004. - Vol. 432. - P. 231-235

155 Gregory R. I., Yan K.P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs // Nature. - 2004. - Vol. 432. - P. 235-240.

156 Wang Y., Medvid R., Melton C., Jaenisch R., Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal // Nature genetics. - 2007. - Vol. 39. - P. 380-385.

157 Han J., Lee Y., Yeom K.H.H., Nam J.W.W., Heo I., Rhee J.K.K., Sohn S. Y. Y., Cho Y., Zhang B.T. T., Kim, V. N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex // Cell. - 2006. - Vol. 125. - P. 887-901.

158 Lund E., G¨uttinger S., Calado A., Dahlberg J. E., Kutay U. Nuclear export of microRNA precursors // Science (New York, N.Y.). - 2004. - Vol. 303. - P. 95-98.

159 Meister G., Tuschl T. Mechanisms of gene silencing by double-stranded RNA // Nature. - 2004. - Vol. 431. - P. 343-349.

160 Forstemann K., Tomari Y., et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein // PLoS Biol. - 2005. - Vol. 3, № 7. - e. 236.

161 Chendrimada T. P., Gregory R. I., et al. TRBP recruits the DICER complex to Ago2 for microRNA processing and gene silencing // Nature. - 2005. - Vol. 436, № 7051. - P. 740-744.

162 Gregory R. I., Yan K. P., et al. The Microprocessor complex mediates the genesis of microRNAs // Nature. - 2004. - Vol. 432, No, 7014. - P. 235-240.

163 Carthew R.W., Sontheimer E.J. Origins and mechanisms of miRNAs and siRNAs // Cell. - 2009. – Vol. 136. - P.642-655.

164 Hammond S. M., Boettcher S., et al. Argonaute2, a link between genetic and biochemical analyses of RNAi // Science. - 2001. - Vol. 293, № 5532. - P. 1146-1150.

165 Elbashir S. M., Harborth J., et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells // Nature. - 2001. - Vol. 411, № 6836. - P. 494-498.

166 Yan K. S., Yan S., et al. Structure and conserved RNA binding of the PAZ domain // Nature. - 2003. - Vol. 426, № 6965. - P. 468-474.

167 Hutvagner G. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation // FEBS Lett. - 2005. - Vol. 579, № 26. - P. 5850-5857.

168 Rajewsky Nikolaus. microRNA target predictions in animals // Nat Genet. 38 Suppl (2006a): S8—13

169 Baek D., Villen J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P. The impact of microRNAs on protein output // Nature. - 2008. - Vol. 455. - P. 64-71.

170 Huang T.H., Fan B., Rothschild M.F., Hu Z.L., Li K., Zhao S.H. miRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans // BMC Bioinformatics. - 2007. - Vol. 8. - P. 341.

171 Zhang Y., Fons J. Verbeek. Comparison and integration of target prediction algoritms for microRNA studies // J. of Integrative Bioinformatics. - 2010. - Vol. 7, № 3. - P. 127.

172 Wilson P.A., Plucinski M. A simple Bayesian estimate of direct RNAi gene regulation events from different gene expression profiles // BMC Genomics. – 2011. – Vol. 12, No 250.

173 Krek Azra, et al. Combinatorial microRNA target predictions // Nat Genet. - 2005. - Vol. 37, № 5. - P. 495-500.

174 Grun D., Wang Y.L., Langenberger D., Gunsalus K.C., Rajewsky N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets // PLoS Comp Biol. - 2005. - Vol. 1, № 1. - e. 13.

175 Nikolaus Rajewsky. microRNA target predictions in animals // NATURE GENETICS SUPPLEMENT. - 2006. - Vol. 38. - P. 1-6.

176 Kiriakidou, Marianthi, et al. A combined computational-experimental approach predicts human microRNA targets // Genes Dev. - 2004. - Vol. 18, № 10. - P. 1165-1178.

177 Min, Hyeyoung, Sungroh Yoon. Got target? Computational methods for microRNA target prediction and their extension // Exp Mol Med. - 2010. - Vol. 42, № 4. - P. 233-244

178 Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs // Nature. - 2008. - Vol. 455. - P. 58-63.

179 Enright, Anton J., Bino John, Ulrike Gaul, Thomas Tuschl, Chris Sander, Debora S. Marks. MicroRNA targets in Drosophila // Genome Biol. - 2003. - Vol. 5, № 1. - R 1.

180 Wuchty S., Fontana W., Hofacker I.L., Schuster P. Complete suboptimal folding of rna and the stability of secondary structures // Biopolymers. - 1999. - Vol. 49. - P. 145-165.

181 John, Bino, Anton J. Enright, Alexei Aravin, Thomas Tuschl, Chris Sander, Debora S. Marks. Human MicroRNA targets // PLoS Biol. - 2004. - Vol. 2, № 11. - e. 363.

182 Stark A., Brennecke J., Russell R.B., Cohen S.M. Identification of Drosophila MicroRNA targets // PloS Biol. - 2003. - Vol. 1. - E60.

183 Hofacker I.L. Vienna RNA secondary structure server // Nucleic Acid Res. - 2003. - Vol. 31. - P. 3429-3431.

184 Matherws D.H., Sabina J., Zuker M., Turner D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure // J. Mol. Biol. - 1999. - Vol. 288. - P. 911-940.

185 Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R. Fast and effective prediction of microRNA/target duplexes // RNA. - 2004. - Vol. 10. - P. 1507-17.

186 Fang Z., Rajewsky N. The impact of miRNA target sites in coding sequences and in 3’UTRs // PLoS ONE. - 2011. - Vol. 6, № 3. - e. 18067.

187 Schnall-Levin M., Rissland O.S., Johnston W.K., Perrimon N., Bartel D.P., Berger B. Unusually effective microRNA targeting within repeart-rich coding regions of mammalian mRNAs // Genome Rasearch. – 2011. - Vol. 21, № 9. – P. 1395-1403.

188 Maziere P., Enright A.J. Prediction of microRNA targets // Drug Discov. Today. - 2007. - Vol. 12. - P. 452-458.

189 Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans // Nature. 2000. - Vol. 403. - P. 901-906.

190 Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation in heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans // Cell. - 1993. - Vol. 75. - P. 855-862.

191 Ha I., Wightman B., Ruvkun G. A buldge lin-4/lin-14 RNA duplex is sufficient for caenorhabditis elegans lin-14 temporal gradient formation // Genes Dev. - 1996. - Vol. 10. - P. 3041-3050.

192 Abrahante J.E., Daul A.L., Li M., Volk M.L., Tennessen J.M., et.al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs // Dev Cell. - 2003. - Vol. 4. - P. 625-637.

193 Lin S.Y., Johnson S.M., Abraham M., Vella M.C., Pasquinelli A., Gamberi C., Gottlieb E., Slack F.J. The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target // Dev.Cell. - 2003. - Vol. 4. - P. 639-650.

194 Kiriakidou M., Nelson P.T., Kouranov A., Fitziev P., Bouyioukos C., et al. A combined computational-experimental approach predicts human microRNA targets // Genes Dev. - 2004. - Vol. 18. - P. 1165-1178.

195 Doench J.G., Sharp P.A. Specificity of microRNA target selection in translational repression // Genes. Dev. - 2004. - Vol. 18. - P. 504-511.

196 Brennecke J., SterkA., Russell R.B., Cohen S.M. Principles of microRNA-target recognition // Plos Biology. - 2005. - Vol. 3. - P. 0404-0418. e85.

197 Kuhn D.E., Martin M.M., Feldman D.S., Terry A.V. Jr Nuovo G.J., Elton,T.S. // Experimental validation of miRNA targets. Methods. - 2008. - Vol. 44. - P. 47-54.

198 Daniel W. Thomson, Cameron P. Bracken, Gregory J. Goodall. Experimental strategies for microRNA target identification // Nucleic Acids Research. - 2011. - P 1-9. doi:10.1093/nar/gkr330

199 Elmen J., Lindow M., Schutz S., Lawrence M., Petri A., Obad S.,Lindholm M., Hedtjarn M., Hansen H.F., Berger U., et al. LNA-mediated microRNA silencing in non-human primates // Nature. - 2008. - Vol. 452. - P. 896-899.

200 Lim L.P., Lau N.C., Garrett-Engele P., Grimson A., Schelter J.M., Castle J., Bartel D.P., Linsley P.S., Johnson J.M. Microarray analysis shows that some microRNAs downregulate large numbers of target мРНКs // Nature. - 2005. - Vol. 433. - P. 769-773.

201 Park S.M., Gaur A.B., Lengyel E., Peter M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 // Genes Dev. - 2008. - Vol. 22. - P. 894-907.

202 EasowG., Teleman A.A., Cohen S.M. Isolation of microRNA targets by miRNP immunopurification // RNA. - 2007. - Vol. 13. - P. 1198-1204.

203 Hafner M., Landthaler M., Burger L., Khorshid M., Hausser J., Berninger P., Rothballer A., Ascano M., Jr. Jungkamp A.C., Munschauer M., et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP // Cell. 2010. - Vol. 141. - P. 129-141.

204 Hendrickson D.G., Hogan D.J., Herschlag D., Ferrell J.E., Brown P.O. Systematic identification of мРНКs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance // PLoS ONE. - 2008. - Vol. 3. - e 2126.

205 Chi S.W., Zang J.B., Mele A., Darnell R.B. Argonaute HITS-CLIP decodes microRNA-мРНК interaction maps // Nature. - 2009. - Vol. 460. - P. 479-486.

206 Zisoulis D.G., Lovci M.T., Wilbert M.L., Hutt K.R., Liang T.Y.,Pasquinelli A.E., Yeo,G.W. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans // Nat. Struct. Mol. Biol. - -2010. – Vol. 17. – P. 173–179.

207 Hafner M., Landthaler M., Burger L., Khorshid M., Hausser J., Berninger P., Rothballer A., Ascano M., Jungkamp A.C., Munschauer M., Ulrich A., Wardle G.S., Dewell S., Zavolan M., Tuschl T. PAR-CliP – a mothod to identify transcriptome-wide the binding sites of RNA binding proteins // J. Vis. Exp. - 2010. - Vol. 41. – doi: 10.3791/2034.

208 Orom U.A., Lund A.H. Isolation of microRNA targets using biotinylated synthetic microRNAs // Methods. - 2007. - Vol. 43. - P. 162-165.

209 Vatolin S., Navaratne K., Weil R.J. A novel method to detect functional microRNA targets // J. Mol. Biol. - 2006. - Vol. 358. - P. 983-996.

210 Yang Y., Chaerkady R., Kandasamy K., Huang T.C., Selvan L.D., Dwivedi S.B., Kent O.A., Mendell J.T., Pandey A. Identifying targets of miR-143 using a SILAC-based proteomic approach // Mol. Biosyst. - 2010. - Vol. 6. - P. 1873-1882.

211 Thanasis Vergoulis, Ioannis S. Vlachos, Panagiotis Alexiou, George Georgakilas, Manolis Maragkakis, Martin Reczko, et al. TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support // Nucleic Acids Research. - 2011. - P. 1-8. doi:10.1093/nar/gkr1161

212 Lim LP., Glasner ME., Yekta S., Burge CB., Bartel DP. Vertebrate microRNA genes // Science. - 2003. – Vol. 299. - P. 1540.

213 Reinhart BJ., Weinstein EG., Rhoades MW., Bartel B., Bartel DP. MicroRNAs in plants // Genes Dev. - 2002. – Vol. 16. - P. 1616.-1626.

214 Lim L., Lau N., Weinstein E. et al. The microRNAs of C. elegans // Genes Dev. - 2003. - Vol. 17. - P. 991-1008.

215 Pfeffer S., Zavolan M., Grasser FA.,Chein M., Russo JJ., Ju J., John B., Enright AJ., Marks D., Sander C., Tuschl T. Identification of virus-encoded microRNAs // Science. - 2004. - № 304. - P. 734-736.

216 Enquela-Kerscher A., Slack F.J. Oncomirs – microRNAs with a role in cancer // Nat Rev Cancer. - 2006. - № 6. - P. 259-269.

217 Lynam-Lennon N., Staphen G., Reynold M., Reynold J. The role of microRNA in cancer and apoptosis // Biol.Reviews. - 2009. - № 84. - P. 55-71.

218 He L., Thomson J.M., Hemann M.T., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S.W., Hannon G.J., et al. A microRNA polycistron as a potential human oncogene // Nature. - 2005. - № 435. - P. 828-833.

219 Griffiths-Jones S., Enright A.J., Farazi T.A. et al. MicroRNA research // The 2008 Collection booklet: Exiqon. - 2008. - P. 36.

220 Ryazansky S.S., Gvozdev V.A. Small RNAs and Cancerogenesis // Biochemistry. - 2008. - Vol. 73. - № 5. - P. 514-527.

221 Esquela-Kerscher A., Slack F.J. Oncomirs – microRNA with a role in cancer // Nat Rev Cancer. - 2006. - Vol. 6, No 4. - P. 259-269.

222 Fearon ER., Vogelstein B. A genetic model for colorectal tumorigenesis // Cell. - 1990. - № 61. - P. 759-767.

223 Nagel R., Le Sage C., Diosdado B., Waal M., Oude Vrielink JA., Boligin A., Meijer GA., Agami R. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer // Cancer Res. - 2008. - № 68. - P. 5795-5802.

224 Cierdiello F., Tortora G. EGFR antagonists I cancer treatment // N Engl J Med. - 2008. - № 358. - P. 1160-1174.

225 Kressner U., Bjorheim J., Westring S.,Wahlberg S.S., Pahlman L., Glimelius B., Lindmark G., Lindblom A., Borresen-Dale A.L. Ki-ras mutation and prognosis in colorectal cancer // Eur. J. Cancer. - 1998. - № 34. - P. 518-521.

226 Shields J.M., Pruitt K., McFall A., Shaub A., Der C.J. Understanding ras: ‘it ain’t over ‘til it’s over // Trends Cell. Biol. - 2000. - № 10. - P. 147-154.

227 Campbell S.L., Khosravi-Far R., Rossman K.L., Clark G.J., Der C.J. Increasing complexity of Ras signaling // Oncogene. - 1998. - № 17. - P. 1395-1413.

228 Johnson SM., Grosshans H., Shingara J., Byrom M., Jarvis R., Cheng A., Labourier E., Reinert KL., Brown D., Slack FJ. RAS is regulated by the let-7 microRNA family // Cell. - 2005. - № 120. - P. 635-647.

229 Akao Y., Nakagawa Y., Naoe T. let-7 microRNA functions as a potential growh suppressor in human colon cancer cells // Biol Pharm Bull. - 2006. - № 29. - P. 903-906.

230 Chen X., Guo X., Zhang H., Xiang Y., Cheng J., Yin Y., et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis // Oncogene. - 2009. - № 28. - P. 1385-1392.

231 Tsang WP., Kwok TT. The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-RAS // Carcinogenesis. - 2009. - № 30. - P. 953-959.

232 Guo C., Sah JF., Beard L., Willson JK., Markowitz SD., Guda K. The non-coding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers // Genes Chromosomes Cancer. - 2008. - № 47. - P. 939-946.

233 Meng F., Henson R., Wehbe-Janek H., Groshal K., Jacob ST., Patel T. MicroRNA-21 regulated expression of the PTEN tumor suppressor gene in human hepatocellular cancer // Gastroenterology. - 2007. - № 133. - P. 647-658.

234 Krichevsky AM., Gabriely G. miR-21: a small multi-faceted RNA // J Cell Mol Med. - 2009. - № 13. - P. 39-53.

235 He L., He X., Lowe SW., Hannon GJ. microRNAs join the p53 network-another piece in the tumour-suppression puzzle // Nat Rev Cancer. - 2007. - № 7. - P. 819-822.

236 Hermeking H. p53 enters the microRNA world // Cancer Cell. - 2007. - № 12. - P. 414-418.

237 Chang TC., Wentzel EA., Kent OA., Ramachandran K., Mullendore M., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis // Mol Cell. - 2007. - № 26. - P. 745-752.

238 Toyota M., Suzuki H., Sasaki Y., Maruyama R., Imai K., Shinomura Y., Tokino T. Epigenetic silencing of microRNA-34b/c and B-cell Tanslocation gene 4 is associated with CpG island methylation in colorectal cancer // Cancer Res. - 2008. - № 68. - P. 4123-4132.

239 Lee E.J., Gusev Y., Jiang J., Nuovo G.J., Lerner M.R., Frankel W.L., Morgan D.L., Postier R.G., Brackett D.J., Schmittgen T.D. Expression profiling identifies microRNA signature in pancreatic cancer // Int. J. Cancer. - 2007. - № 120. - P. 1046-1054.

240 Volinia S., Calin GA., Liu CG., Ambos S., Cimmino A., Petrocca F., et al. A microRNA expression signature of human solid tumors defines cancer gene targets // Proc Nati Acad Sci USA. - 2006. - № 103. - P. 2257-2261.

241 Bandres E., Cubedo E., Agirre X., Malumbres R., Zarate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzo M., Garcia-Foncillas J. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues // Mol. Cancer. - 2006. - № 5. - P. 29.

242 Spizzo R., Nicoloso M.S., Lupini L. et.al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells // Cell death differ. - 2010. - Vol. 17, № 2. - P. 246-54.

243 Xia L., Zhang D., Du R., Pan Y., Zhao L., Sun S., Hong L., Liu J., Fan D. MiR-15 and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells // Int J Cancer. - 2008. - № 123. - P. 372-9.

244 Kumar MS., Lu J., Mercer KL., Golub TR., Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis // Nat Genet. - 2007. - № 39. - P. 673-7.

245 Samowitz W.S., Slattery M.L., Sweeney C., Herrick J.,Wolff R.K., Albertsen H. APC Mutations and Other Genetic and Epigenetic Changes in Colon Cancer // Mol Cancer Res. - 2007. - Vol. 5, №2. - P.165-170.

246 Jin L.H., Shao Q.-J., Luo W., Ye Z.-Y., Li Q., Lin S.-C. Detection of point mutations of the axin1 gene in colorectal cancers // Int. J. Cancer. - 2003. - Vol.107. - P. 696-699.

247 Hughes T.A., Brady H.J. Regulation of axin2 expression at the levels of transcription, translation and protein stability in lung and colon cancer // Cancer Lett. - 2006. Vol. 233, № 2. - P. 338-47.

248 Løvig T., Meling G. I., Diep C. B., Thorstensen L., Andersen S.N., Lothe R. A., Rognum T.O. APC and CTNNB1 Mutations in a Large Series of Sporadic Colorectal Carcinomas Strati ed by the Microsatellite Instability Status // Scand J Gastroenterol. - 2002. - Vol.10. - P. 1184-1193.

249 Ueno K., Hiura M., Suehiro Y., Hazama S., Hirata H., Oka M., Imai K., Dahiya R., Hinoda Y. Frizzled-7 as a potential therapeutic target in colorectal cancer // Neoplasia. - 2008. - Vol.10, №7. - P. 697-705.

250 Caspi M., Zilberberg A., Eldar-Finkelman H., Arbesfeld R.R. Nuclear GSK-3b inhibits the canonical Wnt signalling pathway in a b-catenin phosphorylation-independent manner // Oncogene. - 2008. -P 1–10. doi:10.1038/sj.onc.1211026

251 Fox E.J., Leahy D.T., Geraghty R., Mulcahy H.E., Fennelly D., Hyland J.M., et al. Exclusive Promoter Hypermethylation Patterns of hMLH1 and O6-Methylguanine DNA Methyltransferase in Colorectal Cancer // Journal of Molecular Diagnostics. - 2006. - Vol.8, №1 - P. 68-75.

252 Wu Y., Berends M.J.W., Sijmons R.H., Mensink R.G.J., Verlind E., Kooi K.A., et al. A role for MLH3 in hereditary nonpolyposis colorectal cancer // Nature Genetics. - 2001. - Vol. 29. - P. 137 - 138. doi:10.1038/ng1001-137

253 Hegde M., Blazo M., Chong B., Prior T., Richards C. Assay Validation for Identification of Hereditary Nonpolyposis Colon Cancer-Causing Mutations in Mismatch Repair Genes MLH1, MSH2, and MSH6 // Journal of Molecular Diagnostics. - 2005. - Vol. 7, № 4 - P. 525-534.

254 Takahashi M., Koi M., Balaguer F., Boland C.R., Goel A. MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor // J Biol Chem. - 2011. - Vol. 286, № 14. - P. 12157-65.

255 Boxtel R., Toonen P.W., Roekel H.S., Verheul M., Smits B.M.G., Korving J., Bruin A., Cuppen E. Lack of DNA mismatch repair protein MSH6 in the rat results in hereditary non-polyposis colorectal cancer-like tumorigenesis // Carcinogenesis. 2008. - Vol. 29, № 6. - P. 1290-1297. doi:10.1093/carcin/bgn094

256 Filipe B., Baltazar C., Albuquerque C., Fragoso S., Lage P., Vitoriano I., Mão de Ferro S., Claro I., Rodrigues P., Fidalgo P., Chaves P., Cravo M., Nobre Leitão C. APC or MUTYH mutations account for the majority of clinically well-characterized families with FAP and AFAP phenotype and patients with more than 30 adenomas // Clin Genet. - 2009. - Vol. 76, № 3. - P. 242-55.

257 Camps J., Armengol G., Rey J., Lozano J.J., Vauhkonen H., Prat E., Egozcue J., Sumoy L., Knuutila S., Miro R. Genome-wide differences between microsatellite stable and unstable colorectal tumors // Carcinogenesis. - 2006. - Vol. 27, № 3. - P. 419–428.

258 Lee J.W., Soung Y.H., Kim S.Y., Nam S.W., Kim C.J., Cho Y.G., Lee J.H., Kim H.S., Park W.S., Kim S.H., Lee J.Y., Yoo N.J.,Lee S.H. Inactivating mutations of proapoptotic Bad gene in human colon cancers // Carcinogenesis. - 2004 - Vol. 25, № 8. - P. 1371-1376.

259 Tu S., Sun R.W-Y., Lin M.C.M., Cui J.T., Zou B., Gu Q., Kung H.F., Che C.M., Wong B.C.Y. Gold (III) porphyrin complexes induce apoptosis and cell cycle arrest and inhibit tumor growth in colon cancer // Cancer. - 2009. Vol. 115, № 19. P. 4459 - 4469.

260 Jaffrey R.G., Pritchard S.C., Clark C., Murray G.I., Cassidy J., Kerr K.M., Nicolson M.C., McLeod H.L. Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell lung cancer // Cancer Res. - 2000. - Vol. 60, № 16. - P. 4349-52.

261 Sawai H., Yasuda A., Ochi N., Ma J., Matsuo Y., Wakasugi T., Takahashi H., Funahashi H., Sato M., Takeyama H. Loss of PTEN expression is associated with colorectal cancer liver metastasis and poor patient survival // BMC Gastroenterology. - 2008. - Vol. 8, № 56. - doi:10.1186/1471-230X-8-56.

262 Seth R., Keeley J., Abu-Ali G., Crook S., Jackson D., Ilyas M. The putative tumour modifier gene ATP5A1 is not mutated in human colorectal cancer cell lines but expression levels correlate with TP53 mutations and chromosomal instability // J. Clin. Pathol. - 2009. - Vol. 62. - P. 598-603.

263 Zhang L., Ren X., Alt E., Bai X., Huang S., Xu Z., Lynch P.M., Moyer M.P., Wen X.-F., Wu X. Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis // Nature. - 2010. Vol. 464. - P. 1058-1061.

264 Bryan E.J., Jokubaitis V.J., Chamberlain N.L., Baxter S.W., Dawson E., Choong D.Y., Campbell I.G. Mutation analysis of EP300 in colon, breast and ovarian carcinomas // Int J Cancer. - 2002. Vol. 102, № 2. - P. 137-41.

265 Porter T.R., Richards F.M., Houlston R.S., Evans D.G.R., Jankowski J.A., Macdonald F., Norbury G., Payne S.J., Fisher S.A., Tomlinson I., Maher E.R. Contribution of cyclin d1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer // Oncogene. - 2002. Vol. 21, №12. - P. 1928-1933.

266 Ashktorab H., Schäffer A.A., Daremipouran M., Smoot D.T., Lee E., Brim H. Distinct Genetic Alterations in Colorectal Cancer // PLoS One. - 2010. Vol. 5, № 1. - e8879.

267 Weichert W., Knösel T., Bellach J., Dietel M., Kristiansen G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival // J Clin Pathol. - 2004. - Vol. 57, № 11. - P. 1160–1164.

268 Wheeler J., Kim H., Efstathiou J., Ilyas M., Mortensen N., Bodmer W. Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer // Gut. - 2001. - Vol. 48, № 3.- P. 367–371.

269 Shiah S-G., Tai K.-Y., Wu C.-W. Epigenetic Regulation of EpCAM in Tumor Invasion and Metastasis // Journal of Cancer Molecules. - 2008. - Vol. 3, № 6. - P. 165-168.

270 Li G., Liu C., Yuan J., Xiao X., Tang N., Hao J., Wang H., Bian X., Deng Y., Ding Y. CD133(+) single cell-derived progenies of colorectal cancer cell line SW480 with different invasive and metastatic potential // Clin Exp Metastasis. - 2010. - Vol. 27, № 7. - P. 517-27.

271 Tol J.,Nagtegaal I.D., Punt C.J.A. BRAF Mutation in Metastatic Colorectal Cancer // N Engl J Med. - 2009. - Vol. 361. - P. 98-99.

272 Castro-Carpeño J., Belda-Iniesta C., Sáenz E.C., Agudo E.H., Batlle J.F., Barón M.G. EGFR and colon cancer: a clinical view // Clinical and Translational Oncology. - 2008. - Vol. 10, № 1. - P. 6-13. DOI: 10.1007/s12094-008-0147-3

273 Markman B., Javier Ramos F., Capdevila J., Tabernero J. EGFR and KRAS in colorectal cancer // Adv Clin Chem. - 2010. - Vol. 51. - P. 71-119.

274 Smith D.R., Goh H.S. Overexpression of the c-myc proto-oncogene in colorectal carcinoma is associated with a reduced mortality that is abrogated by point mutation of the p53 tumor suppressor gene // Clin Cancer Res. - 1996. - Vol. 2. - P. 1049-1053.

275 Langers A.M.G., Sier C.F.M., Hawinkels L.J.L.C., Kubben F.G.J.M., van Duijn W., et al. MMP-2 geno-phenotype is prognostic for colorectal cancer survival, whereas MMP-9 is not // Br J Cancer. - 2008. - Vol. 98, № 11. - P. 1820–1823.

276 Wilson S., Wakelam M.J.O., Hobbs R.F.D., Ryan A.V., Dunn J.A., Redman V.D., et al. Evaluation of the accuracy of serum MMP-9 as a test for colorectal cancer in a primary care population // BMC Cancer. - 2006. - Vol. 6, № 258. - doi:10.1186/1471-2407-6-258.

277 Corrêa S., Binato R., Rocher B.D., Castelo-Branco M.T.L., Pizzatti L., Abdelhay E. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia // BMC Cancer. - 2012. - Vol. 12, № 303. - doi:10.1186/1471-2407-12-303.

278 Wilson P.M., Ladner R.D., Lenz H.-J. Predictive and Prognostic Markers in Colorectal Cancer // Gastrointest Cancer Res. - 2007. - Vol. 1, № 6. - P. 237–246.

279 Zhu M.M., Tong J.L., Xu Q., Nie F., Xu X.T., Xiao S.D., Ran Z.H. Increased JNK1 Signaling Pathway Is Responsible for ABCG2-Mediated Multidrug Resistance in Human Colon Cancer // PLoS ONE. - 2012. - Vol. 7, № 8. - e41763. doi:10.1371/journal.pone.0041763

280 McConnell B.B., Yang V.W. Mammalian Krüppel-Like Factors in Health and Diseases // Physiol Rev. - 2010. - Vol. 90, No .4. - P. 1337-1381.

281 Spaderna S., Schmalhofer O., Wahlbuhl M., Dimmler A., Bauer K., Sultan A., Hlubek F., Jung A., Strand D., Eger A., Kirchner T., Behrens J., Brabletz T. The Transcriptional Repressor ZEB1 Promotes Metastasis and Loss of Cell Polarity in Cancer // Cancer Res. - 2008. - Vol. 68, № 2. - P.537-544.

282 Peña C., García J.M., Larriba M.J., Barderas R., Gómez I., Herrera M., et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue // Oncogene. - 2009. - Vol. 28, № 49. - P. 4375-85.

283 Trump D.L., Johnson C.S. Vitamin D and Cancer // Springer. - 2011. – P. 342.

284 Du L., Wang H., He L., Zhang J., Ni B., Wang X., Jin H., Cahuzac N., Mehrpour M., Lu Y., Chen Q. CD44 is of Functional Importance for Colorectal Cancer Stem Cells // Clin Cancer Res. - 2008. - Vol. 14. - P. 6751-7967.

285 Boccaccio C., Comoglio P.M. Invasive growth: a MET-driven genetic programme for cancer and stem cells // Nature Reviews Cancer. - 2006. - Vol. 6. - P. 637-645.

286 Lennartsson J., Rönnstrand L. The Stem Cell Factor Receptor/c-Kit as a Drug Target in Cancer // Current Cancer Drug Targets. - 2006. - Vol. 6. - P. 561-571.

287 Kopetz S. Targeting Src and Epidermal Growth Factor Receptor in Colorectal Cancer: Rationale and Progress Into the Clinic // Gastrointest Cancer Res 1(suppl 2). - 2007. - P. S37–S41.

288 Rustgi A.K. The genetics of hereditary colon cancer // Genes & Dev. - 2007. - Vol. 21. - P. 2525-2538.

289 Biswas S., Trobridge P., Romero-Gallo J., Billheimer D., Myeroff L.L., Willson J.K., et al. Mutational inactivation of TGFBR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor beta resistant cells // Genes Chromosomes Cancer. - 2008. - Vol. 47, № 2. - P.95-106.

290 Hawinkels L.J.A.C., Zuidwijk K., Verspaget H.W., de Jonge-Muller E.S.M., van Duijn W., Ferreira V., et al. VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis // European Journal of Cancer. - 2008. - Vol. 44, № 13. - P. 1904-1913.

291 Sartore-Bianchi A., Martini M., Molinari F., Veronese S., Nichelatti M., Artale S., et al. PIK3CA Mutations in Colorectal Cancer Are Associated with Clinical Resistance to EGFR-Targeted Monoclonal Antibodies // Cancer Res. - 2009. - Vol. 69. - P 1851-1857.

292 Woodford-Richens K.L., Rowan A.J., Gorman P., Halford S., Bicknell D.C., Wasan H.S., et al. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway // PNAS. - 2001. - Vol. 98, № 17. - P. 9719-9723.

293 Wu P.P., Jin Y.L., Shang Y.F., Jin Z., Wu P., Huang P.L. Restoration of DLC1 gene inhibits proliferation and migration of human colon cancer HT29 cells // Ann Clin Lab Sci. - 2009. - Vol. 39, № 3. - P. 263-9.

294 Julien S.G., Dubé N., Hardy S., Tremblay M.L. Inside the human cancer tyrosine phosphatome // Nature Reviews Cancer. - 2011. - Vol. 11. - P. 35-49.

295 Idziaszczyk S., Wilson C.H., Smith C.G., Adams D.J., Cheadle J.P. Analysis of the frequency of GNAS codon 201 mutations in advanced colorectal cancer // Cancer Genetics and Cytogenetics. - 2010. - Vol. 202, № 1. - P. 67-69.

296 Ryan B.M., Molloy A.M., McManus R., Arfin Q., Kelleher D., Scott J.M., Weir D.G. The methylenetetrahydrofolate reductase (MTHFR) gene in colorectal cancer: role in tumor development and significance of allelic loss in tumor progression // Int J Gastrointest Cancer. - 2001. - Vol. 30, № 3. - P.105-11.

297 Lu X., Wei W., Fenton J., Nahorski M.S., Rabai E., Reiman A., et al. Investigation of the Birt-Hogg-Dube tumour suppressor gene (FLCN) in familial and sporadic colorectal cancer // J Med Genet. - 2010. - Vol. 47, № 6. - P. 385-90.

298. Иващенко А.Т., Исабекова А.С., Берилло О.А., Хайленко В.А., Ащеулов А.С., Атамбаева Ш.А. Создание информационных баз микроРНК и белок-кодирующих генов участвующих в онкогенезе // КазҰМУ хабаршысы. - 2010. -№ 1. -С. 204-205.

299. Иващенко А.Т., Хайленко В.А., Берилло О.А., Исабекова А.C., Атамбаева Ш.А., Кабдуллина А.А. Проблемы ранней молекулярной диагностики онкологических заболеваний // Вестник КазНУ. Серия биологическая. - 2010. - №1 (43). - С. 29-35.

300 Nakajima G., Hayashi K., Xi Y. et al. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer // Cancer Genomics Proteomics. - 2006. - Vol. 3, № 5. - P. 317–324.

301 Lu J., Getz G., Miska E.A. et al. MicroRNA expression profiles classify human cancers // Nature. - 2005. – Vol. 435, № 7043. - P. 834–8.

302 Michael M.Z., Connor S.M., van Holst Pellekaan N.G. et al. Reduced accumulation of specific microRNAs in colorectal neoplasia // Mol Cancer Res. - 2003. – Vol. 1. - P. 882-91.

303 Pillai R.S., Bhattacharyya S.N., Artus C.G. et al. Inhibition of translational initiation by let-7 microRNA in human cells // Sceince. - 2005. – Vol. 309. - P. 1573-1576.

304 Gregersen L.H., Jacobsen A.B., Frankel L.B. et al. MicroRNA-145 Targets YES and STAT1 in Colon Cancer Cells // PLoS One. - 2010. - Vol. 5. - I.1.

305 Calin G.A., Dumitru C.D., Shimizu M. et al. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia // Proc Natl Acad Sci USA. - 2002. – Vol. 99. - P. 15524-9.

306 Tazawa H., Tsuchiya N., Izumiya M., Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells // PNAS. - 2007. - Vol. 104, № 39. - P.15472-15477.

307 Akao Y., Nakagawa Y., Naoe T. let-7 MicroRNA functions as a potential growth suppressor in human // Biol. Pharm. Bull. - 2006. - Vol. 29, № 5. - P. 903—906.

308 Bandres E., Cubedo E., Agirre X. et al. Identification by realtime PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues // Mol Cancer. - 2006. – Vol. 5. - P. 29.

309 Asangani I.A., Rasheed S.A.K., Nikolova D.A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulatestumor suppressor Pdcd4 and stimulates invasion, intravasationand metastasis in colorectal cancer // Oncogene. - 2008. – Vol. 27. - P. 2128-2136.

310 Slaby O., Svoboda M., Fabian P. et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer // Oncology. - 2007. – Vol. 72. - P. 397–402.

311 Guo C., Sah J.F., Beard L. et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and isfrequently lost in colon cancers // Genes Chromosomes Cancer. - 2008. - Vol. 47. - P. 939 – 46.

312 Link A., Balaguer F., Shen Y. et al. Fecal microRNAs as novel biomarkers for colon cancer screening // Cancer Epidemiol Biomarkers Prev. - 2010. – Vol. 19, № 7. - P. 1766–74.

313 Xi Y., Formentini A., Chien M. et al. Prognostic values of microRNAs in colorectal cancer // Biomarker Insights. - 2006. – Vol. 1. - P. 113–121.



314 Ng E.K.O., Chong W.W.S., Jin H. et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening // Gut. - 2009. – Vol. 58. - P. 1375–1381.

315 Motoyama K., Inoue H., Takatsuno Y. et al. Over- and under-expressed microRNAs in human colorectal cancer // IJ Oncology. - 2009. - Vol. 34. - P. 1069-1075.

316 Schetter A.J., Leung S.Y., Sohn J.J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma // JAMA. - 2008. – Vol. 299. - P. 425-436.

317 Strillacci A., Griffoni C., Sansone P. et al. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells // Exp Cell Res. - 2009. – Vol. 315. - P. 1439–47.

318 Svoboda M., Izakovicova Holla L., Sefr R. et al. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecita-bine chemoradiotherapy of rectal cancer // Int J Oncol. - 2008. – Vol.33. - P. 541–7.

319 Schepeler T., Reinert J.T., Ostenfeld M.S. et al. Diagnostic and prognostic microRNAs in stage II colon cancer // Cancer Res. - 2008. – Vol. 68, № 15. - P. 6416-24.

320 Huang Z., Huang D., Ni S. et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer // Int J Cancer. - 2010. – Vol. 127, № 1. - P. 118-26.

321 Sarver A.L., French A.J., Borralho P.M., Thayanithy V. et al. Human Colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states // BMC Cancer. – 2009. – Vol. 9, № 401. http:/www.biomedcentral.com/1471-2407/9/401.

322 Pu X., Huang G., Guo H. et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and correlated with p53 expression // Journal of Gastroenterology and Hepatology. - 2010. - Vol. 25. - I. 10. - P. 1674–1680.

323 Isabekova A.S., Ivachshenko A.T., Regnier M. MicroRNAs in colorectal cancer // Вестник КазНУ. Серия биологическая. - 2010. – T. 3, № 45. - C. 134-138.



  1. 324 Issabekova A.S., Ivachshenko A.T. Common microRNAs for stem cells and colon cancer cells // Materials of conference «Advances in Stem Cell Rasearch»/ 3rd EMBO Stem Cell Conference. - 2011. Paris. - P. 114.

  2. 325 Исабекова А.С., Берилло О.А., Хайленко В.А., Атамбаева Ш.А., Иващенко А.Т. Использование микроРНК в диагностики рака // материалы 2-ой международной конференции Астана Биотех2011. Астана. – 2011. - С. 44.

  3. 326 Исабекова А.С., Берилло О.А., Хайленко В.А., Иващенко А.Т. Особенности связывания межгенных и интронных miRNA с mRNA гена Е-кадерина человека // Вестник КазНУ им. аль-Фараби. Серия биол. – 2011.– №1 (47). – С. 19-23.

327 A. Issabekova, O. Berillo, M. Regnier, A. Ivashchenko. Interactions of intergenic microRNAs with mRNAs of genes involved in carcinogenesis // Bioinformation. - 2012. - Vol. 8, № 11. - P. 513-518.

  1. 328 Берилло О.А., Исабекова А.С., Хайленко В.А., Атамбаева Ш.А., Иващенко А.Т. Свойства интронных miRNA человека и особенности их взаимодействия с mRNA // Вестник КазНУ им. аль-Фараби. Серия биол. – 2011. –Т. 4, №50 – С. 37-41.

  2. 329 Исабекова А.С., Берилло О.А., Хайленко В.А., Атамбаева Ш.А., Иващенко А.Т. Свойства межгенных miRNA человека и особенности их взаимодействия с mRNA // Вестник КазНУ им. аль-Фараби. Серия биол. – 2011. – Т. 4, №50 – С.41-45.

  3. 330 Иващенко А.Т., Берилло О.А., Исабекова А.С., Хайленко В.А.,Атамбаева Ш.А. Свойства интронных и межгенных miRNA человека и особенности их взаимодействия с mRNA // Известия НАН РК. Серия биологическая и медицинская. - 2011. - № 5. - C. 34-39.

  4. 331 Исабекова А.С., Берилло О.А., Хайленко В.А., Иващенко А.Т. Xарактеристики взаимодействия межгенных, интронных и экзонных miRNA с mRNA генов участвующих в онкогенезе // Материалы международной научно-практической конференции «Фармацевтические и медицинские биотехнологии. Москва. - 2012. - С. 70-73.

  5. 332 Issabekova A. microRNAs - molecular targets in cancer treatment // Материалы международного конгресса студентов и молодых ученых «Мир науки»/КазНУ. -2012. - C. 184.

  6. 333 Исабекова А.С., Хайленко В.А., Иващенко А.Т. Связывание межгенных microRNA человека с сайтами mRNA генов, участвующих в развитии рака толстой кишки // Вестник КазНУ им. аль-Фараби. Серия биол. – 2012. –Т. 4, №56 – С. 307-312.

  7. 334 Берилло О.А., Исабекова А.С.,Хайленко В.А., Иващенко А.Т. Характеристики связывания межгенных, интронных и экзонных microRNA с mRNA генов, кодирующих интронные microRNA // Вестник КазНУ им. аль-Фараби. Серия биол. – 2012. –Т. 4, №56 – С. 292-300.

  8. 335 A. Issabekova, O. BerilloA.T. Ivashchenko, miRNAs bind to mRNAs in sites encoding conserved oligopeptides // Materials of the 9th international Conference on Nanosciences & Nanotechnologies (NN12). - 2012. - Greece. - P.302.

  9. 336 Issabekova A.S., Ivachshenko A.T. Single nucleotide polymorphisms of microRNA-binding sites in mRNA of some oncogenes // Materials of conference «Non-coding RNA, Epigenetic Memory, and the Environment». - 2011. London. –poster 112.

  10. 337 Issabekova A., Ivachshenko A., Regnier M. Feature of interaction of intergenic miRNAs with mRNA of CDH1 gene participating in development of cancer // Conference Proceedings of MCCMB'11. - 2011. - Moscow. - P. 366-367.

  11. 338 Berillo O.A., Issabekova A.S., Regnier M., Ivashchenko A.T. Characteristics of binding sites of intergenic, intronic and exonic miRNAs with mRNAs of oncogenes coding intronic miRNAs // African Journal of Biotechnology. ISSN 1684-5315. - 2012. – in press

  12. 339 Issabekova A., Berillo O., Khailenko V., Ivachshenko A. Some miRNAs selectively regulate some colorectal cancer oncogenes // Conference Proceedings “NCRI Cancer conference”. - Liverpool. UK. – 2011. -P. 71.

  13. 340 Issabekova A., Ivachshenko A. Features of miRNA binding to some colorectal cancer oncogenes // Conference Proceedings of 13th International PhD Symposium «The Rhythm of Life: Cycles in biology». - Heidelberg. Germany. - 2011. - P. 151-152.

341 Исабекова А.C., Атамбаева Ш.А., ИващенкоА.Т. Нанобиокомплексы в диагностике заболеваний // Материалы международного междисциплинарного симпозиума «Нанотехнология и ноосферология в контексте системного кризиса цивилизации». - 2011. - Симферополь-Ялта. - С. 58.

342 Исабекова А.С., Иващенко А.Т. МикроРНК межгенного происхождения участвующие в развитии рака толстой кишки человека // Материалы VI Московского международного конгресса «Биотехнологя: состояние и перспективы развития». - 2011. - Москва. Часть 1. – С. 61-62.

343 Berillo O.A., Isabekova A.S., Khailenko V.A., Ivachshenko A.T. Peculiarities of interaction mirna with mrna of some oncogenes // The seventh international Conference on Bioinformatics of Genome regulation and Structure \ systems biology. - 2010. - Novosibirsk. - Р. 115.

344 Исабекова А.С, Берилло О.А., Хайленко В.А., Иващенко А.Т. Характеристики связывания межгенных, интронных и экзонных miRNA c mRNA генов участвующих в онкогенезе // Вестник КазНУ им. аль-Фараби. Серия биол. – 2012. –Т. 1, №53 – С. 18-23.

345 Иващенко А.Т., Берилло О.А., Исабекова А.С., Байдильдинова Г.К. miRNA – перспективные фармацевтические вещества в лечении рака молочной железы // Материалы первой Международной конференции Развитие нанотехнологий: задачи международных и региональных научно-образовательных и научно-производственных центров. - 2012. Барнаул. - С. 199-200.

346 Исабекова А.С. Особенности взаимодействия микроРНК с изоформами пре-мРНК и мРНК онкогенов BAX И BAD // Материалы 1-международного конгресса студентов и молодых ученых «Мир науки»/КазНУ. - 2010. - С. 178-179.

347 Fart K.K., Grimson A., Jan C., Lewis B.P., Johnston W.K., Lim L.P., Burge C.B., Bartel D.P. The widespread impact of mammalian microRNAs on мРНК repression and evolution // Science. - 2005. - Vol. 310. – P. 1817-1821.

348 Иващенко А.Т., Берилло О.А., Исабекова А.С., Хайленко В.А. Нуклеотиды в сайтах связывания mRNA с miRNA кодируют консервативные олигопептиды в ортологичных белках // Известия НАН РК. Серия биологическая и медицинская. - 2012. - № 2 – C. 68-75.

349 A.S. Issabekova, O.A. Berillo, V.A. Khailenko. Features of hsa-mir-1279 binding sites in protein-coding sequence of PTPN12, MSH6, ZEB1 genes // Materials of the 8th international Conference on Bioinformatics of Genome regulation and Structure\systems biology. BGRS\SB'12. - Novosibirsk. Russia. - 2012. - P. 130.

350 A. Issabekova, O.A. Berillo, A.T. Ivashchenko. miRNA binding sites in protein-coding sequence of orthologous mRNAs encode conserved oligopeptides // Materials of the 3rd Moscow International conference “Molecular Phylogenetics” «MolPhy-3» Proceedings . - Moscow. Russia. - 2012. - P.149.





Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   11




©dereksiz.org 2024
әкімшілігінің қараңыз

    Басты бет